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Introduction

These notes are based on reviews for the mathematics portion of the Fun-
damentals of Engineering exam given at the University of Kentucky. As you
study these notes, keep in mind that the FE Supplied Reference Handbook
contains many of the basic formulas covered here. You should also famil-
iarize yourself with the reference handbook. While studying, you should
concentrate on ensuring that you understand the ideas behind the formulas
and can work relevant problems. Also, these notes are based on a two-
hour review session, and it is not possible to cover all of the concept from
the FE exam during that time period. Please make sure you fill in any
gaps! Finally, there are of course other resources available to help you study.
One example is the FE Exam review site at the University of Oklahoma:
http://www.feexam.ou.edu.

1 Algebra

1.1 Quadratic equations

A quadratic equation is given by ax2 + bx + c. The quadratic formula for
finding roots of this equation is

x =
−b±

√
b2 − 4ac

2a
.
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The sign of the discriminant b2 − 4ac determines what types of roots this
equation will have. If b2 − 4ac > 0, there will be two distinct real roots.
If b2 − 4ac = 0, there will be one repeated real root. If b2 − 4ac < 0,
there will be two complex roots which are conjugates of each other. For
example, if we wish to solve 3x2 + 2x + 1 = 0, then the discriminant is
22− 4 · 3 · 1 = 4− 12 = −8, so we expect to have two complex roots. Indeed,

x =
−2±

√
−8

2
= −1± 2

√
−2
2

= −1± i
√

2.

1.2 Logarithms

The logarithm function y = loga x is the inverse of the exponential function
ax, so that y = loga x if and only if x = ay. (Here a > 0 is the base of the
logarithm.) Special cases of the logarithm include base a = 10, in which case
we write log10 x = log x; and a = e, in which case we write loge x = lnx. ln
is called the natural logarithm, and e = 2.71828....

Here are several important properties of logarithms:

Changing bases: loga x =
logb x
logb a

.

Logs of products: loga(xy) = loga x+ loga y.

Logs of differences: loga
x

y
= loga x− loga y.

Logs of exonentials: loga x
y = y loga x.

Other rules: loga 1 = 0, loga a = 1, loga a
x = x loga a = x.

For example, lnx = log x
log e . Also, log 10003 = 3 log 1000 = 3 log 103 =

9 log 10 = 9. Finally, ln ex−y = (x− y) ln e = (x− y).

1.3 Trigonometry

Be sure you understand the basic definitions of sin and cos from right triangle
trigonometry. The four other main trig functions can be derived from these:
tanx = sinx

cosx , cotx = cosx
sinx = 1/ tanx, secx = 1

cosx , cscx = 1
sinx . The FE

Supplied Reference Handbook also contains a large number of trig identities,
starting with the most important one: sin2 x + cos2 x = 1. It is of course
not necessary to memorize these, but you probably will want to familiarize
yourself with them so you know where to find them in case you need them.
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1.4 Complex numbers

A complex number is given by a+ib, where a, b are real numbers and i2 = −1
(or, i =

√
−1). Complex numbers may be multiplied by using normal rules

of algebra (“first-outer-inner-last”, for example) and then using the identity
i2 = −1. For example,

(2+3i)(1+2i) = 2·1+2·(2i)+3i·1+(3i)(2i) = 2+7i+6i2 = 2+7i−6 = −4+7i.

The complex conjugate of a complex number a+ib is given by a+ ib = a−ib.
In order to divide two complex numbers, we multipliy top and bottom by
the complex conjugate of the denominator. For example,

2 + 3i
1 + 2i

=
2 + 3i
1 + 2i

1− 2i
1− 2i

=
2− i− 6i2

1− 4i2
=

8− i
5

=
8
5
− 1

5
i.

Note also that (a+ ib)(a+ ib) = a2 + b2.
Complex numbers may also be represented using polar coordinates. We

write z = a + ib = reiθ, where eiθ may be computed using Euler’s for-
mula eiθ = cos θ + i sin θ; see Figure 1. The conversion between standard

Figure 1: Polar representation of a complex number. {fig1-4}

and polar representations may be carried out exactly as for the conversion
between the Cartesian coordinate (a, b) and its polar representation (r, θ).
That is, r =

√
a2 + b2, and θ is any angle terminating in the same quad-

rant as (a, b) for which tan θ = b
a . (Recall that we may not simply write

θ = arctan b
a , since the range of arctan is −π

2 < y < π
2 , but (a, b) may also

lie in the second or third quadrant.) For example, let z = (2 − 2i). Then
r =

√
22 + (−2)2 =

√
8. Also, θ satisfies tan θ = 2

−2 = −1, and θ lies in
the same quadrant as (2,−2), which is the fourth quadrant. Thus θ = −π

4 ;
see Figure 2. We then write 2 − 2i =

√
8e−iπ/4. We may carry out the

following multiplication as follows:

(2− 2i)
√

32eiπ/4 =
√

8e−iπ/4
√

32eπ/4 =
√

256e−iπ/4+iπ/4 =
√

256e0 = 16.
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Figure 2: Polar representation of z = 2− 2i. {fig1-4-2}

2 Vectors

2.1 The dot product

A vector ~u in three space dimensions is represented as ~u = u1
~i + u2

~j +
u3
~k = 〈u1, u2, u3〉. The dot product is defined by ~u · ~v = |~u||~v| cos θ, where
|~u| =

√
u2

1 + u2
2 + u2

3 is the length of |~u| and θ is the angle between u1 and
u2 (see Figure 3). Thus the dot product of two vectors is a scalar. Note

Figure 3: The angle between two vectors. {fig2-1}

also that
cos θ =

~u · ~v
|~u||~v|

.

We may alternatively write

~u · ~v = u1v1 + u2v2 + u3v3.

Note also that the dot product is commutative, that is, ~u · ~v = ~v · ~u. Recall
also that two nonzero vectors ~u,~v are perpendicular if and only if ~u · ~v = 0.

2.2 The cross product

Geometrically, the cross product ~u×~v of two three-vectors is a vector which
is perpendicular to the plane in which ~u and ~v lie; ~u × ~v has orientation
given by the right hand rule (curl the fingers of your right hand through
~u, then through ~v, and your thumb will point in the direction of ~u × ~v).
This also leads us to observe that the cross product is NOT commutative;
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instead we have ~u×~v = −~v× ~u. The cross product may be computed using
determinants:

~u× ~v =

∣∣∣∣∣∣
~i ~j ~k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ =~i

∣∣∣∣ u2 u3

v2 v3

∣∣∣∣−~j ∣∣∣∣ u1 u3

v1 v3

∣∣∣∣+ ~k

∣∣∣∣ u1 u2

v1 v2

∣∣∣∣ .
The area of the parallelogram spanned by ~u and ~v is given by |~u× ~v| =

|~u||~v| sin θ, where θ is again the angle between ~u and ~v (see Figure 4). This

Figure 4: Parallelogram formed by two vectors. {fig2-2}

leads to the observation that two nonzero vectors ~u and ~v are parallel if and
only if their cross product is the zero vector. In addition, the volume of
the parallelepiped spanned by three vectors ~u,~v, ~w is given by |~w · (~u× ~v)|.
Example: Find the volume of the parallelepiped spanned by

~u =~i+~j − ~k, ~v = 2~i+ 3~j = 4~k, ~w = 4~i+~j − ~k.

To solve, we first compute ~u× ~v:

~u× ~v =

∣∣∣∣∣∣
~i ~j ~k
1 1 1
2 3 4

∣∣∣∣∣∣ =~i

∣∣∣∣ 1 1
3 4

∣∣∣∣−~j ∣∣∣∣ 1 1
2 4

∣∣∣∣+ ~k

∣∣∣∣ 1 1
2 3

∣∣∣∣ .
=~i(1 · 4− 3 · 1)−~j(1 · 4− 2 · 1) + ~k(1 · 3− 2 · 1) =~i− 2~j + ~k.

The volume of the parallelepiped is then

|~w · (~u×~v)| = |(4~i+~j−~k) · (~i−2~j+~k) = 4 ·1+1 · (−2)−1 ·1 = 4−2−1 = 1.

3 Matrices

3.1 Matrix basics and matrix multiplication

An m× n matrix is an array of numbers having m rows and n columns. In
order to find the product AB of two matrices A and B, B must have the
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same number of rows as A has columns. That is, A must be m × n and
B n × p, and the resulting matrix AB is m × p. The ij-th entry of AB
is obtained by taking the dot product of the i-th row of A with the j-th
column of B. For example,[

1 2 3
4 5 6

] 1 2
3 4
5 6

 =
[
〈1, 2, 3〉 · 〈1, 3, 5〉 〈1, 2, 3〉 · 〈2, 4, 6〉
〈4, 5, 6〉 · 〈1, 3, 5〉 〈4, 5, 6〉 · 〈2, 4, 6〉

]

=
[

22 28
49 64

]
.

Note also that the product of a 2× 3 matrix with a 3× 2 matrix is a 2× 2
matrix. Note also that in general AB 6= BA. In fact, it may be possible to
compute AB but not BA.

The identity matrix I is a square matrix with the property that IA = A
and AI = A whenever these expressions make sense (i.e., when the dimen-
sions of A and I match appropriately). The 3× 3 identity matrix is

I =

 1 0 0
0 1 0
0 0 1

 .
The transpose of a matrix A = [aij ] is given by AT = [aji]. For example, 1 2 3

4 5 6
7 8 9

T =

 1 4 7
2 5 8
3 6 9

 .
The determinant of a 2×2 matrix is

∣∣∣∣ a b
c d

∣∣∣∣ = ad−bc. The determinant

of a 3× 3 matrix (given by expansion along the first row) is∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23

a23 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22

a31 a33

∣∣∣∣ .
The inverse A−1 of a square matrix A satisfies AA−1 = A−1A = I. Note

that A may not have an inverse even if A is nonzero; in fact A−1 exists
if and only if detA 6= 0. Cofactors may be used to compute the inverses
of matrices. Given a 3 × 3 matrix A = [aij ], the cofactor of entry aij is
cij = (−1)i+j detAij , where Aij is the 2× 2 matrix obtained by deleting the
i-th row and j-th column of A. Then A−1 = 1

detA [cij ]T .
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3.2 Solution of linear systems of equations

Matrices may be used to solve linear systems via Gaussian elimination. For
example, in order to solve

2x+ 4y + 6z = 0,
4x+ 5y + 6z = 3,
4x+ 8y + 9z = 6,

we may place the coefficients of the system into a matrix and then perform
elementary row operations (multiplying rows by constants and replacing
rows with linear combinations) as follows: 2 4 6 0

4 5 6 3
4 8 9 6

 R1/2→R1
R2−2R1→R2−→
R3−2R1→R3

 1 2 3 0
0 −3 −6 3
0 0 −3 6

 −R2/3→R2−→
−R3/3→R3

 1 2 3 0
0 1 2 −1
0 0 1 −2


R1−2R2→R1−→
R2−2R3→R2

 1 0 −1 2
0 1 0 3
0 0 1 −2

 R1+R3→R1−→

 1 0 0 0
0 1 0 3
0 0 1 −2

 .
Thus the solution to the linear system is x = 0, y = 3, z = −2.

4 Differential calculus

4.1 Derivatives and slope

The derivative of a function y = f(x) at x is defined by

y′(x) = f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)
∆x

= lim
∆x→0

∆y
∆x

,

where ∆y = f(x + ∆x) − f(x). f ′(x) is the slope of the tangent line to
the graph y = f(x) at x. For example, let f(x) = tanx + lnx. Then
f ′(x) = sec2 x + 1

x . The slope of the tangent line at x = π is sec2 π + 1
π =

1 + 1
π . We may find the equation of the tangent line by using the point-

slope formula y − y0 = m(x − x0). y0 = f(π) = tanπ + lnπ = lnπ. Thus
y = lnπ + (1 + 1

π )(x− π) is the equation of the tangent line.

4.2 Maxima and minima of functions; inflection points

Let y = f(x). We say that f(x) is increasing on an interval (a, b) if f(y) >
f(x) whenever y > x. If f ′(x) > 0 for all x in (a, b), then f is increasing on
(a, b). Similarly, f is decreasing on (a, b) if f ′(x) < 0 on (a, b).
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A function f(x) has a local maximum at a if f(x) ≤ f(a) for all x near
a; f has a local minimum at a if f(x) ≥ f(a) for all x near a. The second
derivative test states that f(x) has a local maximum (minimum) at a if
f ′(a) = 0 and f ′′(a) < 0 (f ′′(a) > 0)).

A function f(x) has an absolute maximum (minimum) at c ∈ [a, b] if
f(c) ≥ f(x) (f(c) ≤ f(x)) for all x ∈ [a, b]. A continuous function f always
takes on an absolute minimum and maximum on a closed interval [a, b]. The
closed interval tests states that the absolute minimum and maximum of f
may be found by comparing the values of f at the critical points (places
where f ′(x) = 0 or f ′(x) doesn’t exist) and endpoints a, b of [a, b].

For example, let f(x) = −x3 + 3x. We have f ′(x) = −3x2 + 3. Setting
f ′(x) = −3(x2 − 1) = 0, we see that f has critical points at x = ±1. Also,
f ′′(x) = −6x, so f ′′(−1) = 6 > 0. Thus by the second derivative test, f has
a local minimum at the critical point x = −1. Similarly, f ′′(1) = −6 < 0,
so f has a local maximum at x = 1. If we wish to find the absolute extreme
values of f on the closed interval [−2, 3], we use the closed interval test by
comparing the values of f at the critical points ±1 and endpoints −2, 3.
f(−1) = 1 − 3 = −2 and f(1) = −1 + 3 = 2. Also, f(−2) = 8 − 6 = 2,
and f(3) = −27 + 9 = −18. Thus the absolute maximum of f on [−2, 3] is
2 (taken on at 1 and -2), and the absolute minimum is -18 (taken on at 3).
See Figure 5.

Figure 5: Finding minimum and maximum values. {fig5}

f has an inflection point at c if f ′′ changes sign at c. We check for
inflection points by looking for points c where f ′′(c) = 0 or f ′′(c) doesn’t
exist. In the above example f(x) = −x3 + 3x, we have f ′′(x) = −6x, so the
point c = 0 is a candidate for an inflection point. When x < 0, f ′′(x) > 0,
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and f ′′(x) < 0) when x > 0. Thus f ′′ changes sign (and thus also concavity)
at c = 0, and c = 0 is an inflection point of f .

4.3 Partial derivatives

In order to take partial derivative of a function of several variables with
respect to one of the variables x, we treat all other variables as constants
and differentiate with respect to x. For example, let P = P (R,S, T ) =
R1/4T sin(2S). Then ∂P

∂R = 1
4R
−3/4T sin(2S), ∂P

∂S = 2R1/4T cos(2S), and
∂P
∂T = R1/4 sin(2S).

5 Integral calculus

5.1 Indefinite integrals

An indefinite integral (or antiderivative) of a given function f(x) is a function
F (x) such that F ′(x) = f(x). F (x) is specified only up to an arbitrary
constant. For example,∫

xn dx =
xn+1

n+ 1
+ C, n 6= −1,

∫
dx
x

= ln |x|+ C.

A number of other indefinite integrals may be found in the FE Reference
book.

5.2 Definite integrals and integration techniques

A definite integral is defined as a limit of Riemann sums:
∫ b
a f(x) dx =

limn→∞
∑n

i=1 f(x∗i )∆x, where xi = a+ i∆x, x∗i ∈ [xi−1, xi], and ∆x = b−a
n .

See Figure 6. Note that
∫ b
a f(x) dx may be interpreted as the area under the

curve y = f(x) when f is positive, and as the net area in the general case.
As an example, we compute the definite integral

∫ 2
0 xe

x2
dx using sub-

stitution. Let u = x2, so du = 2x dx. Note that we must also change the
limits of integration: u(0) = 02 = 0 and u(2) = 22 = 4. Thus∫ 2

0
xex

2
dx =

∫ 4

0

1
2
eu du =

1
2
eu|40 =

1
2

(e4 − e0) =
1
2

(e4 − 1).

Another important integration technique is integration by parts (we only
do an example of an indefinite integral). The formula is

∫
u dv = uv−

∫
v du.

To find
∫
xex dx, we let u = x (since differentiating x results in a simpler
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Figure 6: Definition of a Riemann sum. {fig6}

expression) and v = ex dx (since we may antidifferentiate ex easily). Then
du = dx, and v = ex. So,∫

xex dx = uv −
∫
v du = xex −

∫
ex dx = xex − ex.

Partial fractions are also sometimes used in order to compute definite and
indefinite integrals. For example, suppose we wish to integrate 2x+1

(x+2)(x+1) .
In this (simple) case, partial fractions can be thought of as “undoing” the
standard cross-multiply-and-divide operation:

2x+ 1
(x+ 2)(x+ 1)

=
A

x+ 1
+

B

x+ 2
.

Cross multiplying yields

2x+ 1 = A(x+ 2) +B(x+ 1) = x(A+B) + (2A+B).

Thus we must have A + B = 2, 2A + B = 1. Solving for A and B yields
A = −1, B = 3. Then∫

2x+ 1
(x+ 2)(x+ 1)

dx =
∫ (

−1
x+ 1

+
3

x+ 2

)
dx = − ln |x+1|+3 ln |x+2|+C.

If the denominator has nonsimple roots or irreducible quadratic expressions,
then there other rules for partial fractions expansions. For example, we
write:

2x+ 1
(x− 1)2

=
A

(x− 1)2
+

B

(x− 1)
,

3
(x2 + 1)(x− 1)

=
Ax+B

x2 + 1
+

C

x− 1
.
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5.3 Areas and averages

As an example of an area problem, we find the area between the curves
y = x and y =

√
x. Note that these curves intersect at x = 0 and x = 1,

and that
√
x > x for 0 < x < 1. Thus the area between the curves is∫ 1

0 (
√
x− x) dx = (2

3x
3/2 − 1

2x
2)|10 = 2

3 −
1
2 = 1

6 . See Figure 7.

Figure 7: The area between two curves. {fig7}

As a final application of definite integration, we note that the average
value of a function f(x) between x = a and x = b is 1

b−a
∫ b
a f(x) dx.

6 Differential equations

6.1 First-order ordinary differential equations

There are several types of first-order ordinary differential equations that
can be solved by hand; we consider two. Linear equations have the form
y′ + p(x)y = f(x) and may be solved using the method of integrating fac-
tors. The integrating factor is define by µ(x) = e

R
p(x) dx. Then using the

Fundamental Theorem of Calculus, we find that:

(µ(x)y)′ = µ(x)f(x) ⇒ µy =
∫

(µf) dx, or y(x) =
1

µ(x)

∫
µ(x)f(x) dx.

For example, consider the initial value problem y′+2xy = x, y(0) = 1. Here
p(x) = 2x, so µ(x) = e

R
2x dx = ex

2
. Thus (ex

2
y)′ = xex

2
, and

ex
2
y =

∫
xex

2
dx =

1
2
ex

2
+ C.

Solving, we have y = 1
2 +Ce−x

2
. Also, 1 = y(0) = 1

2 +Ce0, so C = 1− 1
2 = 1

2 .
Thus y(x) = 1

2 + 1
2e
−x2

solves the given initial value problem.
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Separable equations have the form dy
dx = p(x)

q(y) . Separating variables and
integrating yields

∫
q(y) dy =

∫
p(x) dx. For example, consider the initial

value problem dy
dx = −2e2xy2, y(0) = 2. Separating variables yields∫

dy
y2

=
∫
−2e2x dx ⇒ − 1

y
= −e2x + C.

Also, y(0) = 2, so −1
2 = −e0 + C, or C = 1

2 . Thus − 1
y = −e2x + 1

2 , or

y =
1

e2x − 1
2

.

6.2 Second-order ordinary differential equations

We first consider the second-order constant coefficient linear homogeneous
equation ay′′ + by′ + cy = 0, where a, b, c ∈ R. y = erx is a solution to this
equation if r is a root of the characteristic equation ar2 + br+ c = 0. There
are three cases to consider:

1. The characteristic equation has two real roots r1 6= r2, in which case
the general solution is y(x) = c1e

r1x + c2e
r2x and the motion is said to

be overdamped.

2. The characteristic equation has a single repeated real root r, in which
case the general solution is y(x) = c1e

rx + c2xe
rx and the motion is

said to be critically damped.

3. The characteristic equation has two complex roots r± = α ± iβ, in
which case the general solution is y(x) = eαx[c1 cos(βx) + c2 sin(βx)]
and the motion is said to be underdamped.

As an example, consider the initial value problem y′′+2y′+y = 0, y(0) = 1,
y′(0) = 2. The characteristic equation r2 + 2r+ 1 = 0 has a single repeated
real root −1 (note the factorization r2 + 2r + 1 = (r + 1)2), so the general
solution is y(x) = c1e

−x + c2xe
−x. Also, 1 = y(0) = c1. Then y′(x) =

−e−x + c2e
−x− c2xe

−x, so 2 = y′(0) = −1 + c2, and c2 = 3. The solution to
the given initial value problem is thus y(x) = e−x + 3xe−x.

Consider now the nonhomogeneous equation ay′′ + by′ + cy = f(x).
The general solution has the form y = c1y1(x) + c2y2(x) + Yp(x), where
Yp(x) is any particular solution to the nonhomogeneous equation ay′′+by′+
cy = f(x) and c1y1(x) + c2y2(x) is the general solution to the corresponding
homogeneous equation ay′′+by′+cy = 0. For example, consider the equation
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y′′ + y = e2x. Using the method of undetermined coefficients, we guess that
a particular solution will have the form Yp(x) = Ae2x. Then Y ′′p (x) = 4Ae2x,
so we must have Y ′′p + Yp = 4Ae2x + Ae2x = e2x. Thus 5A = 1, or A = 1

5 ,
and our particular solution is Yp(x) = 1

5e
2x. The characteristic equation

r2 +1 = 0 has roots ±i, so the homogeneous equation y′′+y = 0 has general
solution c1 cosx + c2 sinx. Finally, the general solution to y′′ + y = e2x is
y(x) = c1 cosx+ c2 sinx+ 1

5e
2x.

6.3 Laplace transforms

The Laplace transform is defined by L[f(t)] = L[f(t)](s) =
∫∞

0 e−stf(t) dt.
We also have L[y′] = sL[y] − y(0) and L[y′′] = s2L[y] − sy(0) − y′(0). A
couple of standard Laplace transforms are L[1] = 1

s , and L[ect] = 1
s+c ; others

may be found in the FE-supplied reference handbook. As an example, we
solve y′′ + 3y′ + 2y = 1, y(0) = 0, y′(0) = 2 using Laplace transforms. We
have

L[y′′] + 3L[y′] + 2L[y] = L[1],

so
(s2L[y]− sy(0)− y′(0)) + 3(sL[y]− y(0)) + 2L[y] =

1
s
.

Inserting the initial conditions and collecting terms, we have

(s2 + 3x+ 2)L[y] =
1
s

+ 2 ⇒ L[y] =
2s+ 1

s(s2 + 3s+ 2
=

2s+ 1
s(s+ 2)(s+ 1)

.

Using partial fractions, we write

2s+ 1
s(s+ 2)(s+ 1)

=
A

s
+

B

s+ 2
+

C

s+ 1
,

so A(s2 + 3s+ 2) +B(s2 + s) + CC(s2 + 2s) = 2s+ 1. Thus

A+B + C = 0,
3A+B + 2C = 2,

A =
1
2
.

The solution to this system is A = 1
2 , B = −3
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