Kinematics, Dynamics, and Vibrations FE Review Session

Dr. David Herrin

March 27, 2012

Example 1 A 10 g ball is released vertically from a height of 10 m . The ball strikes a horizontal surface and bounces back. The coefficient of restitution between the surface and the ball is 0.75 . The height that the ball will reach after bouncing is most nearly

$$
\begin{array}{ll}
K E=P E & e=\frac{v_{r}}{v_{0}} \\
\frac{1}{2} m v_{0}^{2}=m g h_{0} & \frac{1}{2} m v_{r}^{2}=m g h_{r} \\
v_{0}=\sqrt{m g h_{0}} & h_{r}=5.6 m
\end{array}
$$

Example 2 A 5 g mass is to be placed on a 50 cm diameter horizontal table that is rotating at 50 rpm . The mass must not slide away from its position. The coefficient of friction between the mass and the table is 0.2 . What is the maximum distance that the mass can be placed from the axis of rotation?

$$
\begin{aligned}
& \sum F=m a_{r} \\
& -\mu N=-m \omega^{2} R \\
& R=\frac{\mu g}{\omega^{2}}=.072 m
\end{aligned}
$$

Example 3 A truck of 4000 kg mass is traveling on a horizontal road at a speed of $95 \mathrm{~km} / \mathrm{h}$. At an instant of time its brakes are applied, locking the wheels. The dynamic coefficient of friction between the wheels and the road is 0.42 . The stopping distance of the truck is most nearly
(A) 55 m
(B) 70 m
(C) 85 m
(D) 100 m

$$
\begin{aligned}
& \left.K E\right|_{1}=\left.K E\right|_{2}+W \\
& \frac{1}{2} m v^{2}=\mu_{k} N \Delta x \\
& \Delta x=\frac{1}{2} m v^{2} \frac{1}{\mu_{k} N}=84.5 \mathrm{~m}
\end{aligned}
$$

Example 4 A translating and rotating ring of mass 1 kg , angular speed of 500 rpm , and translational speed of $1 \mathrm{~m} / \mathrm{s}$ is placed on a horizontal surface. The coefficient of friction between the ring and the surface is 0.35 . For an outside radius of 3 cm , the time at which skidding stops and rolling begins is most nearly

$$
\begin{aligned}
& \sum F_{x}=m a \\
& \mu N=m a \\
& \sum M=m g \\
& \sum M=I \alpha \\
& \mu N R=m R^{2} \alpha \\
& v=v_{o}+a t \\
& \omega=\omega_{0}-\alpha t
\end{aligned}
$$

Skidding Stops when

$$
v=R \omega
$$

Example 5 A stationary uniform rod of length 1 m is struck at its tip by a 3 kg rigid ball moving horizontally with velocity of $8 \mathrm{~m} / \mathrm{s}$ as shown. The mass of the rod is 7 kg , and the coefficient of restitution between the rod and the ball is 0.75 . The velocity of the ball after impact is most nearly

$$
\begin{array}{ll}
m v L=m v^{\prime} L+\frac{1}{3} m_{r} L^{2} \omega^{\prime} & \\
e=\frac{v_{r}^{\prime}-v^{\prime}}{v-v_{r}} & v^{\prime}=1.88 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Example 6 The D' Alembert force is

(A) Force of gravity in France.
(B) Force due to inertia.
(C) Resisting force due to static friction
(D) Atomic force discovered by D' Alembert.

Example 7 A 5 kg pendulum is swung on a 7 m long massless cord from rest at 5° from center. The time required for the pendulum to return to rest is most nearly

$$
\omega_{n}=\sqrt{\frac{g}{L}} \quad f=\frac{1}{2 \pi} \sqrt{\frac{g}{L}} \quad f=0.1885 \mathrm{~Hz}, ~ T=\frac{1}{f}
$$

Example 8 A 2 kg mass is suspended by a linear undamped spring with a spring constant $3.2 \mathrm{kN} / \mathrm{m}$. The mass is given an initial velocity of $10 \mathrm{~m} / \mathrm{s}$ from the equilibrium position.

Example 8.1 Calculate the natural frequency of the mass.

$$
\omega_{n}=\sqrt{\frac{k}{m}}=40 \mathrm{rad} / \mathrm{s}
$$

Example 8.2 How long does it take for the mass to complete one complete cycle.

$$
\begin{gathered}
f=\frac{1}{2 \pi} \omega_{n} \\
T=\frac{1}{f}=0.156 \mathrm{~s}
\end{gathered}
$$

Example 8.3 What is the maximum deflection of the spring from the equilibrium position?

$$
x(t)=x_{0} \cos \left(\omega_{n} t\right)+\frac{v_{0}}{\omega_{n}} \sin \left(\omega_{n} t\right)
$$

Example 9 A 115 kg motor turns at 1800 rpm , and it is mounted on a pad having a stiffness of $500 \mathrm{kN} / \mathrm{m}$. Due to an unbalanced condition, a periodic force of 85 N is applied in a vertical direction, once per revolution. Neglecting damping and horizontal movement, the amplitude of vibration is

$$
\begin{aligned}
& \omega_{n}=\sqrt{\frac{k}{m}}=66 \mathrm{rad} / \mathrm{s} \\
& \omega_{f}=188.5 \mathrm{rad} / \mathrm{s} \\
& \delta_{p s t}=\frac{F_{o}}{k}=1.7 E-4 \mathrm{~m} \\
& \beta=\left|\frac{1}{1-\left(\frac{\omega_{f}}{\omega_{n}}\right)^{2}+2 C\left(\frac{\omega_{f}}{\omega_{n}}\right)^{2}}\right|=0.14 \mathrm{~m} \\
& D=\beta \delta_{p s t}=0.024 \mathrm{~mm}
\end{aligned}
$$

Example 10 A uniform disk of 10 kg mass and 0.5 m diameter rolls without slipping on a flat horizontal surface, as shown. When its horizontal velocity is $50 \mathrm{~km} / \mathrm{h}$, the total kinetic energy of the disk is most nearly

$$
K E=\frac{1}{2} m v_{o}^{2}+\frac{1}{2} I_{o} \omega^{2}
$$

Example 11 A homogeneous disk of 5 cm radius and 10 kg mass rotates on an axle AB of length 0.5 m and rotates about a fixed point A. The disk is constrained to roll on a horizontal floor. Given an angular velocity of $30 \mathrm{rad} / \mathrm{s}$ in the x direction and $-3 \mathrm{rad} / \mathrm{s}$ in the y direction, the kinetic energy of the disk is

$$
K E=\frac{1}{2} I_{x} \omega_{x}^{2}+\frac{1}{2} I_{y} \omega_{y}^{2}+\frac{1}{2} I_{z} \omega_{z}^{2}
$$

Example 12 The natural frequency of the system is designed to be $\omega_{n}=10 \mathrm{rad} / \mathrm{s}$. The spring constant k_{2} is half of k_{1}, and the mass is 1 kg . The mass associated with the other components may be assumed to be negligible. For the given natural frequency, the spring constant k_{1} is most nearly

$$
\begin{aligned}
& m \ddot{x}+k_{e q} x=0 \\
& \frac{1}{k_{e q}}=\frac{1}{2 k_{1}}+\frac{1}{k_{2}} \\
& \omega_{n}=\sqrt{\frac{k_{e q}}{m}}
\end{aligned}
$$

Example 13 A two-bar linkage rotates about the pivot point O as shown. The length of members $A B$ and $O A$ are 2.0 m and 2.5 m , respectively. The angular velocity and acceleration of member OA is $\omega_{O A}=0.8 \mathrm{rad} / \mathrm{s} \mathrm{CCW}$ and $\alpha_{O A}$ $=0 \mathrm{rad} / \mathrm{s}^{2}$. The angular velocity of member $A B$ is $\omega_{A B}=1.2$ $\mathrm{rad} / \mathrm{s} \mathrm{CW}$, and the acceleration of member $A B$ is $\alpha_{A B}=3$ $\mathrm{rad} / \mathrm{s}^{2} \mathrm{CCW}$. When the bars are in the position shown, the magnitude of the acceleration of point B is most nearly

$$
\begin{aligned}
\vec{a}_{A}= & \vec{\omega}_{O A} \times\left(\vec{\omega}_{O A} \times \vec{r}_{A / O}\right)+\vec{\alpha}_{O A} \times \vec{r}_{A O} \\
\vec{a}_{B}= & \vec{a}_{A}+\vec{\omega}_{A B} \times\left(\vec{\omega}_{A B} \times \vec{r}_{B / A}\right)+\vec{\alpha}_{A B} \times \vec{r}_{B / A}+ \\
& 2 \vec{\omega}_{A B} \times \vec{v}_{B / A}+\vec{a}_{B / A}
\end{aligned}
$$

Gears - Quick Review

Spur Gears

Bevel Gears

Helical Gears

Types of Gears

Worm Gear

Rack and Pinion

Concepts Review

Angular velocity, ω

Angular velocity, ω
(b)

Terminology

Pitch circles

Fundamental Law of Gearing

Fixed Shafts

Gear Ratio

$$
\begin{gathered}
N=\frac{r_{2}}{r_{1}}=\frac{N_{2}}{N_{1}} \\
r_{1} \theta_{1}=r_{2} \theta_{2} \\
N=\frac{r_{2}}{r_{1}}=\frac{N_{2}}{N_{1}}=\frac{\theta_{1}}{\theta_{2}}=\frac{\omega_{1}}{\omega_{2}}
\end{gathered}
$$

Gear Compatibility

USCS

$$
p=\frac{N}{2 r}
$$

Units???

SI

$$
m=\frac{2 r}{N}
$$

Idlers

Fixed Shafts

Gear Ratio

$$
\begin{aligned}
& N=\frac{r_{2}}{r_{1}}=\frac{N_{2}}{N_{1}}=\frac{\theta_{1}}{\theta_{2}}=\frac{\omega_{1}}{\omega_{2}} \\
& \frac{\omega_{3}}{\omega_{1}}=\frac{\omega_{3}}{\omega_{2}} \frac{\omega_{2}}{\omega_{1}}=\frac{N_{2}}{N_{3}} \frac{N_{1}}{N_{2}}=\frac{N_{1}}{N_{3}}
\end{aligned}
$$

Double Reductions

Fixed Shafts

Gear Ratio

$$
\begin{gathered}
n_{3}=n_{2}=-n_{1}\left(\frac{N_{1}}{N_{2}}\right) \\
n_{4}=-n_{3}\left(\frac{N_{3}}{N_{4}}\right) \\
\frac{n_{4}}{n_{1}}=\frac{N_{1} N_{3}}{N_{2} N_{4}}
\end{gathered}
$$

Double Reductions

Fixed Shafts

Gear Ratio

$\frac{n_{\text {ouput }}}{n_{\text {input }}}=\frac{\text { product of driving teeth }}{\text { product of driven teeth }}$

$$
\frac{n_{4}}{n_{1}}=\frac{N_{1} N_{3}}{N_{2} N_{4}}
$$

Example 1 - Speed Reducer

Example 2

The compound gear train shown is attached to a motor that drives gear A at ω in clockwise as viewed from below. What is the expression for the angular velocity of gear H in terms of the number of teeth on the gears? What is the direction of rotation of gear H as viewed from below.

Gear Forces

SI Units: N, mm, kW

Classification of 4-Bar Linkages

- Grashof Mechanism - One link can perform a full rotation relative to another link
- Grashof Criterion

$$
L_{\text {max }}+L_{\text {min }}<L_{a}+L_{b}
$$

Crank-Rocker Mechanism

$$
L_{1}=L_{\min }
$$

Drag Link Mechanism

$$
\begin{aligned}
& \text { Double-Rocker Mechanism } \\
& L_{2}=L_{\min }
\end{aligned}
$$

Change-Point Mechanism

 Also called Crossover-Position Mechanism$$
L_{\max }+L_{\min }=L_{a}+L_{b}
$$

Non-Grashof Mechanism

- No link can rotate through 360°
- Double Rocker Mechanism of the $2^{\text {nd }}$ Kind
- Triple-Rocker Mechanism

$$
L_{\max }+L_{\min }>L_{a}+L_{b}
$$

TABLE 1.1 SUMMARY OF THE CRITERIA OF MOTION FOR EACH CLASS OF FOUR-BAR LINKAGES
$L_{\text {min }}$: shortest link
$L_{\text {max }}$: longest link
L_{a} and L_{b} : links of intermediate length

Type of mechanism	Shortest link	Relationship between link lengths
Grashof	Any	$L_{\max }+L_{\min } \leq L_{a}+L_{b}$
Crank rocker	Driver crank*	$L_{\max }+L_{\min }<L_{a}+L_{b}$
Drag link Double rocker Crossover-position change point	Fixed link	$L_{\max }+L_{\min }<L_{a}+L_{b}$
Non-Grashof Double rocker of the second kind (triple rocker)	Any	$L_{\text {max }}+L_{\text {min }}<L_{a}+L_{b}$

[^0]
Crank-Slider Mechanism

(a)

(b)

(c)

Quick Return Mechanism

Geneva Mechanism

[^0]: * If the driven crank is the shortest link, its direction of motion is uncertain when the driver crank is at a limiting position.
 ${ }^{\dagger} L_{\text {max }}<L_{\text {min }}+L_{a}+L_{b}$ (otherwise, a four-bar linkage cannot be constructed).

