

Engineering Economics

- Study of the desirability of making an investment
- Very little, if any, true economics (micro or macro) in this subject.

2

3

The Application Of Engineering Economics

Cash Flow

3/31/2010

- Time Value Of Money
- Equivalence
- Compound Interest
- Single Payment Formulas
- Uniform Payment Series Formulas

The Application Of Engineering Economics

• Uniform Gradient

3/31/2010

- Continuous Compounding
- Nominal And Effective Interest
- Present Worth Analysis
- Indefinite Life And Capitalized Cost

The Application Of Engineering Economics

- Valuation And Depreciation
- Straight Line Depreciation
- Modified Accelerated Cost Recovery System Depreciation Inflation
- Effect Of Inflation On A Rate Of Return

Interest & Interest Rate Interest A fee assessed to use borrowed money. The size of the fee will depend upon the amount of money borrowed and the length of time which it is borrowed. Interest Rate

• The percentage rate charged as interest.

Simple Interest A fixed percentage of the principal multiplied by the life of the loan. If: I = total amount of simple interest n = life of the loan i= interest rate (expressed as a decimal) P = principal Then: I = niP

The Time Value of Money

Which would you prefer,
 A. \$100 today or
 B. \$105 a year from now?

3/31/2010

• If you had the \$100 today, you could use it for the year. If you had no use for it now, you could lend and receive interest for the privilege of using your money for the year.

13

14

15

The Time Value of Money

- Money has the ability to earn interest.
- Its value increases with time.
- Since money increases as we move forward from the present to the future, it also must decrease in value if we move backward from the future to the present.

Cash Flows

3/31/2010

- The difference between total cash receipts (*inflows*) and total cash disbursements (*outflows*) for a given period of time.
- Important concept in engineering economics because they form the basis for evaluating projects, equipment and investing alternatives.

Cash Flows	6		$\overline{)}$
• A cash flow and " Timin	w table sh ng ."	lows " Cash Flow "	
Year	Cash Flow	Comment	
Beginning of Year 1	-\$4500	Car is purchased "now" for \$	64500
End of Year 1	-\$350	Maintenance cost per year	
End of Year 2	-\$350	Maintenance cost per year	
End of Year 3	-\$350	Maintenance cost per year	
End of Year 4	-\$350	Maintenance cost per year	
	+\$2000	The car is sold for \$2000	
3/31/2010			10

- In January 2004 a firm purchased a used plotter for \$500.
- In 2005 there were no repairs necessary.
- In 2006, 2007, and 2008, repair costs were \$85, \$130, and \$140, respectively.

18

- The plotter is sold in 2008 for \$300.
- Develop the cash flow table.

3/31/2010

Normal Conventions

- Purchases are at the beginning-of-year,
- Disbursements & receipts are at the end-of-year,
- Resale or salvage value is at the end-of-year.
- Repairs & resale are at the end-of-year.
- A negative sign represents a disbursement and a positive sign represents a receipt.

19

E	Example 2		
		Year	Cash Flow
	Beginning of 2003	0	-\$500
	End of 2003	1	0
	End of 2004	2	0
	End of 2005	3	-\$85
	End of 2006	4	-\$130
	End of 2007	5	-\$140 + \$300 = +\$160
	3/31/2010		20

- Money at different points in time may have the same value in that they may both be worth the same amount in today's dollars.
- When alternatives are acceptable substitutes, they are said to be equivalent.
- For example, at an 8% interest rate, \$100 today is equivalent to \$108 a year from now. 22

Exam	ple 1 Revi	sited					
 At a 10% per year interest rate, how much is \$500 now equivalent to three years from now? \$500 now will increase 10% in each on the three years. 							
Now	End of 1 st year	End of 2 nd year	End of 3 rd year				
\$500.00	500 + 10%(500)	550 + 10%(550)	605 + 10%(605)				
*****	\$550.00	\$605.00	\$665.50				
• Th at	e \$500 now is the end of thre	equivalent to e years.	\$665.50				

Equiv	alenc	e in Engine	eering	
Econo	omics			<u> </u>
If we	wish to ernative	select the bei	tter of two	
⊢ır	st, we l	have to compu	ite the cash	
	OWS.			
	Year	Alternative A	Alternative B	
	0	-\$2000	-\$2800	
	1	+\$800	+\$1100	
	2	+\$800	+\$1100	
	3	+\$800	+\$1100	
3/31/2010				24

С	ompound	Inte	rest	Formu	las
	SINGLE PAYMENT				
	Factor	To Find	Given	Function Name	Formula
	Compound Amount	F	Р	(F/P, i, n)	$F = P(1+i)^n$
	Present Worth	Р	F	(P/F, i, n)	$P = F(1+i)^n$
	UNIFORM PAYMENT S	ERIES			
	Factor	To Find	Given	Function Name	Formula
	Sinking Fund	A	F	(A/F, i, n)	$A = F\left[\frac{i}{(1+i)^n - 1}\right]$
	Capital Recovery	A	Ρ	(A/P, i, n)	$A = P\left[\frac{i(1+i)^n}{(1+i)^n - 1}\right]$
	Compound Amount	F	A	(F/A, i, n)	$F = A\left[\frac{(1+i)^n - 1}{i}\right]$
	Present Worth	Р	A	(P/A, i, n)	$P = A\left[\frac{(1+i)^n - 1}{i(1+i)^n}\right]$
	131/2010				23

Compound Interest Notation

- *i* = Effective interest rate per interest period. In equations, the interest rate is stated as a decimal (that is, 8% interest is 0.08)
- n = Number of interest periods. The interest period is usually one year, but may be different.
- P = the present sum of money.
- F = the future sum of money or an amount at an interest rate *i*, *n* interest periods from present that is equivalent to *P*.

26

27

Compound Interest Notation

- A ≡ An end-of-period receipt/disbursement of a uniform series continuing for *n* periods. The entire series is equivalent to a *P* or a *F* at interest rate *i*.
- *G* = Uniform period-by-period increase in cash flows, the uniform gradient.
- The functional notation scheme is based on the expression (*Find/Given*, *i*, *n*)

3/31/2010

Exam	ple 1		
 At a \$50 \$50 thre 	10% per year ir 0 now equivalen 0 now will increa e years.	nterest rate, how t to three years use 10% in each	r much is from now? on the
Now	End of 1 st year	End of 2 nd year	End of 3 rd year
\$500.00	500 + 10%(500)	550 + 10%(550)	605 + 10%(605)
	\$550.00	\$605.00	\$665.50
• The end	\$500 now is equivalent of three years.	uivalent to \$665	.50 at the

• This gives the relation between a present sum *P* and its equivalent future sum *F*.

31

- F = Present Sum $x (1+i)^n = P(1+i)^n$
- In functional notation it is written: F = P(F/P, i, n)

• Using a compound interest table:

$$P = F(P/F, i, n) = 3000(P/F, 12\%, 4) =$$

= 3000(0.6355) =

- \$1,906.50
- The solution based on the compound interest table is slightly different from the solution using a calculator.
- The compound interest tables are considered to be sufficiently accurate to solve engineering economic problems

			ra	ctor rable - $t = 12$.	00%			
n	P/F	P/A	P/G	F/P	F/A	A/P	A/F	A/G
1	0.8929	0.8929	0.0000	1.1200	1.0000	1.1200	1.0000	0.000
2	0.7972	1.6901	0.7972	1.2544	2.1200	0.5917	0.4717	0.471
3	0.7118	2.4018	2.2208	1.4049	3.3744	0.4163	0.2963	0.924
4	0.6355	3.0373	4.1273	1.5735	4.7793	0.3292	0.2092	1.358
5	0.5674	3.6048	6,3970	1.7623	6.3528	0.2774	0.1574	1.774
6	0.5066	4.1114	8,9302	1.9738	8.1152	0.2432	0.1232	2,1720
7	0.4523	4.5638	11.6443	2.2107	10.0890	0.2191	0.0991	2.551
8	0.4039	4,9676	14.4714	2.4760	12.2997	0.2013	0.0813	2.913
9	0.3606	5.3282	17.3563	2.7731	14.7757	0.1877	0.0677	3.2574
10	0.3220	5.6502	20.2541	3.1058	17.5487	0.1770	0.0570	3.584
11	0.2875	5.9377	23.1288	3.4785	20.6546	0.1684	0.0484	3.895
12	0.2567	6.1944	25.9523	3.8960	24.1331	0.1614	0.0414	4.189
13	0.2292	6.4235	28,7024	4.3635	28.0291	0.1557	0.0357	4.4683
14	0.2046	6.6282	31.3624	4.8871	32.3926	0.1509	0.0309	4.731
15	0.1827	6.8109	33.9202	5.4736	37.2797	0.1468	0.0268	4.980
16	0.1631	6.9740	36.3670	6.1304	42.7533	0.1434	0.0234	5.214
17	0.1456	7,1196	38.6973	6.8660	48.8837	0.1405	0.0205	5.4353
18	0.1300	7.2497	40.9080	7.6900	55.7497	0.1379	0.0179	5.642
19	0.1161	7.3658	42.9979	8.6128	63.4397	0.1358	0.0158	5.8375
20	0.1037	7.4694	44.9676	9.6463	72.0524	0.1339	0.0139	6.0202
21	0.0926	7.5620	46.8188	10.8038	81.6987	0.1322	0.0122	6.1913
22	0.0826	7.6446	48.5543	12.1003	92.5026	0.1308	0.0108	6.3514
23	0.0738	7.7184	50.1776	13.5523	104.6029	0.1296	0.0096	6.5010
24	0.0659	7.7843	51.6929	15.1786	118.1552	0.1285	0.0085	6.6400
25	0.0588	7.8431	53.1046	17.0001	133.3339	0.1275	0.0075	6.7708
30	0.0334	8.0552	58.7821	29.9599	241.3327	0.1241	0.0041	7.2974
40	0.0107	8.2438	65.1159	93.0510	767.0914	0.1213	0.0013	7.8988
50	0.0035	8.3045	67.7624	289.0022	2,400.0182	0.1204	0.0004	8.1593
60	0.0011	8.3240	68.8100	897.5969	7,471.6411	0.1201	0.0001	8.2664
100	1.	8.3332	69.4336	83,522.2657	696,010.5477	0.1200		8.3321

43

45

Uniform Series Sinking Fund Factor

• The reciprocal of the uniform series, sinking fund factor

$$A/F = (F/A)^{-1} = \frac{i}{(1+i)^n - 1}$$

• The notation (*A*/*F*, *i%*,*n*) is helpful setting up the problem, and can be obtained from compound interest tables.

- A fund established to produce a desired amount at the end of a given period, by means of a series of payments throughout the period, is called a sinking fund.
- A sinking fund is to be established to accumulate money to replace a \$10,000 machine.

48

- An individual is considering the purchase of a used automobile.
- The total price is \$6,200.
- With \$1,240 as a down payment and the balance paid in 48 equal monthly payments with interest at 1% per month,
- Compute the monthly payment.
- The payments are due at the end of each month.

53

3/31/2010

Example 7

Solution:

- The amount to be repaid by the 48 monthly payments is cost of the automobile minus the \$1,240 down payment.
- P = \$4,960, A = unknown, n = 48 monthly payments, and i = 1% per month.
- A = P(A/P,1%,48) = 4,960(0.0265) = \$131.44

_			Facto	r Table - $t =$	1.00%			
n	P/F	P/A	P/G	F/P	F/A	A/P	A/F	A/G
1	0.9901	0.9901	0.0000	1.0100	1.0000	1.0100	1.0000	0.0000
2	0.9803	1.9704	0.9803	1.0201	2.0100	0.5075	0.4975	0.4975
3	0.9706	2.9410	2.9215	1.0303	3.0301	0.3400	0.3300	0.9934
4	0.9610	3.9020	5.8044	1.0406	4.0604	0.2563	0.2463	1.4876
5	0.9515	4.8534	9.6103	1.0510	5.1010	0.2060	0.1960	1.9801
6	0.9420	5,7955	14.3205	1.0615	6.1520	0.1725	0.1625	2.4710
7	0.9327	6,7282	19,9168	1.0721	7.2135	0.1486	0.1386	2.960
8	0.9235	7.6517	26.3812	1.0829	8.2857	0.1307	0.1207	3.4478
9	0.9143	8.5650	33.6959	1.0937	9.3685	0.1167	0.1067	3.933
10	0.9053	9.4713	41.8435	1.1046	10.4622	0.1056	0.0956	4.417
11	0.8963	10.3676	50.8067	1.1157	11.5668	0.0965	0.0865	4.900
12	0.8874	11.2551	60,5687	1,1268	12.6825	0.0888	0.0788	5.3815
13	0.8787	12,1337	71,1126	1,1381	13.8093	0.0824	0.0724	5.860
14	0.8700	13.0037	82.4221	1.1495	14.9474	0.0769	0.0669	6.338-
15	0.8613	13.8651	94,4810	1.1610	16.0969	0.0721	0.0621	6.814
16	0.8528	14,7179	107.2734	1.1726	17.2579	0.0679	0.0579	7.288
17	0.8444	15.5623	120,7834	1,1843	18.4304	0.0643	0.0543	7.7613
18	0.8360	16.3983	134.9957	1.1961	19.6147	0.0610	0.0510	8.2323
19	0.8277	17.2260	149,8950	1.2081	20.8109	0.0581	0.0481	8.701
20	0.8195	18,0456	165,4664	1.2202	22.0190	0.0554	0.0454	9.1694
21	0.8114	18.8570	181.6950	1.2324	23.2392	0.0530	0.0430	9.6354
22	0.8034	19.6604	198.5663	1.2447	24.4716	0.0509	0.0409	10.0998
23	0.7954	20.4558	216.0660	1.2572	25.7163	0.0489	0.0389	10.562
24	0.7876	21,2434	234,1800	1.2697	26.9735	0.0471	0.0371	11.0231
25	0.7798	22.0232	252.8945	1.2824	28.2432	0.0454	0.0354	11.483
30	0.7419	25.8077	355.0021	1.3478	34.7849	0.0387	0.0277	13.755
40	0.6717	32.8347	596.8561	1.4889	48.8864	0.0305	0.0205	18.177
50	0.6080	39.1961	879.4176	1.6446	64.4632	0.0255	0.0155	22.436
60	0.5504	44.9550	1,192.8061	1.8167	81.6697	0.0222	0.0122	26.533.
100	0 3697	63.0289	2,605,7758	2,7048	170,4814	0.0159	0.0059	41.3420

Uniform Series	
Factor Summary	入
Compound Amount	(F/A, i, n)
Sinking Fund	(A/F, i, n)
Capital Recovery	(A/P, i, n)
Present Worth	(P/A, i, n)
3/31/2010	56

Nominal And Effective Interest

- Nominal interest is the annual interest rate without considering the effect of any compounding.
- Effective interest is the annual interest rate taking into account the effect of any compounding during the year.

57

- A bank charges 1½ % interest rate per month on the unpaid balance for purchases made on its credit card.
- What is the nominal interest rate that the bank is charging?

60

• What is the effective annual interest rate?

Gradient : Comp	Serie ounc	es d Int	erest	
UNIFORM GRADIE	T			
Factor	To Find	Given	Function Name	Formula
Gradient Present Worth	Р	G	(P/G, i, n)	$P = G \left[\frac{(1+i)^n - 1}{i^2 (1+i)^n} - \frac{n}{i(1+i)^n} \right]$
Gradient Future Worth	F	G	(F/G, i, n)	$F = G \Biggl[\frac{\left(1+i\right)^n - 1}{i^2} - \frac{n}{i} \Biggr]$
Gradient Uniform Series	A	G	(A/G, i, n)	$A = G\left[\frac{1}{i} - \frac{n}{(1+i)^n - 1}\right]$
3/31/2010				64

- The maintenance on a machine is expected to be \$155 at the end of the first year, and it is expected to increase \$35 each year for the following seven years.
- What sum of money should be set aside to pay the maintenance for the eight-year period?

65

Using a 6% interest.

3/31/2010

- Note the diagram for the uniform gradient factors.
- The first term in the uniform gradient is zero and the last term is (*n*-1)G.
- But n is used in the equations and function notation.
- The derivations were done on this basis, and the uniform gradient compound interest tables are computed this way.

67

68

69

Example 11

3/31/2010

- Standard compound interest tables give values for eight interest factors:
 - two single payments,
 - four uniform-payment series, and
 - two uniform gradients.
- These tables do not give the Uniform Gradient Future Worth factor, (*F/G,i,n*).

_	_			
Continuous	s Cor	npo	undina	
			5	1
				A _
-				
Single Payment				
Factor	To Find	Given	Function Notation	Formula
Compound Amount	F	Р	[F/P, r%, n]	F= P[e ^m]
Present Worth	Р	F	[P/F, r%, n]	$P = F[e^{-m}]$
Uniform Payment Se	ries			
Factor	To Find	Given	Function Notation	Formula
Sinking Fund	A	F	[A/F, r%, n]	_ [e'-1]
				$A = F \left[\frac{e^m - 1}{e^m - 1} \right]$
Capital Recovery	A	Р	[A/P, r%, n]	e'-1
				$A = P \left[\frac{1 - e^{-m}}{1 - e^{-m}} \right]$
Compound Amount	F	Α	[F/A, r%, n]	[e ^m - 1]
				$F = A \left[\frac{e^{r}}{e^{r}} - 1 \right]$
Present Worth	Р	А	[P/A, r%, n]	[1-e ^{-m}]
			. ,,	$P = A \left \frac{1}{2} \frac{1}{2} \frac{1}{2} \right $
				[e-i]

- \$500 is deposited each year into a savings bank account that pays 5% nominal interest, compounded continuously.
- How much will be in the account at the end of five years?

72

	168	COMPOUND INT	EREST FACTORS-C	CONTINUOUS COMPO	UNDING [APP.				
		COMPOUND INTEREST FACTORS - CONTINUOUS COMPOUNDING							
		NOM	TNAL INTEDEST DATE	- E OO DERCENT					
		NUMINAL INTEREST RATE = 5.00 PERCENT							
		SINGLE-PAYMENT COMPOUND-AMOUNT	UNIFORM-SERIES COMPOUND-AMOUNT	UNIFORM-SERIES CAPITAL-RECOVERY	GRADIENT SERIES				
		FACTOR	FACTOR	FACTOR	FACTOR				
	N	(F/P)	(F/A)	(A/P)	(A/G)				
		1 0512	1 0000	1 05107					
	1	1.0513	1.0000	1.05127	.0000				
	2	1.1052	2.0513	.538//	.4875				
	3	1.1618	3.1564	.36808	.9667				
	4	1.2214	4.3183	. 28284	1.4375				
	5	1.2840	5.5397	. 23179	1.9001				
	6	1.3499	6.8237	. 19782	2.3544				
	1	1.4191	8.1736	. 17362	2.8004				
	8	1.4918	9.5926	. 15552	3.2382				
	9	1.5683	11.0845	.14149	3.6678				
	10	1.6487	12.6528	.13031	4.0892				
	11	1.7333	14.3015	.12119	4.5025				
	12	1.8221	16.0347	.11364	4.9077				
	13	1.9155	17.8569	. 10727	5.3049				
	14	2.0138	19.7724	.10185	5.6941				
	15	2.1170	21.7862	.09717	6.0753				
	16	2.2255	23.9032	.09311	6.4487				
	17	2.3396	26.1287	.08954	6.8143				
	18	2.4596	28.4683	.08640	7.1720				
	19	2.5857	30.9279	.08360	7.5221				
	20	2.7183	33.5137	.08111	7.8646				
	21	2.8577	36.2319	.07887	8.1996				
	22	3.0042	39.0896	.07685	8.5270				
	23	3.1582	42.0938	.07503	8.8471				
	24	3.3201	45.2519	.07337	9.1599				
1	25	3.4903	48.5721	.07186	9.4654				
•	26	3.6693	52.0624	.07048	9.7638				
	27	3.8574	55.7317	.06921	10.0551				
	28	4.0552	59.5891	.06805	10.3395				
2/	29	4.2631	63.6443	.06698	10,6170				
J/	20	4 4817	67 9074	06600	10 8877				

Engineering Economics Problems

- The techniques presented illustrate how to convert single amounts of money, and uniform or gradient series of money, into some equivalent sum at another point in time.
- Compound interest computations are an essential part of engineering economics problems and understanding the Time-Value of Money.

75

Engineering Economics Problems

- The typical situation is that there are a number of alternatives;
- Which alternative should be selected?
- The customary method of solution is to express each alternative in a common form
- Then choose the best alternative by either maximizing benefits or minimizing costs

3/31/2010

Present Worth

• Present Worth Analysis converts all of the money consequences of an alternative into an Equivalent Present Sum.

78

Present Worth

- Present Worth Analysis is most frequently used to determine the present value of future money receipts and disbursements.
- We might want to know the present value of an income producing property, like an oil well.
- This should provide us with an estimate of the price at which the property could be bought or sold.

79

3/31/2010

- Machine X has an initial cost of \$10,000, an annual maintenance of \$500 per year, and no salvage life at the end of its fouryear life.
- Machine Y costs \$20,000, and the first year there is no maintenance cost.
- For the second year, maintenance for machine Y is \$100, and it increases
 \$100 per year thereafter.

84

- Machine Y has an anticipated \$5,000 salvage value at the end of its 12-year useful life.
- If minimum attractive rate of return (MARR) is 8%, which machine should be selected?

85

86

87

Example 13

3/31/2010

- Solution:
- The analysis period was not stated in the problem.
- Therefore, the least common multiple of the lives can be selected,
- or 12 years, as the analysis period.

3/31/2010

Example 13

- PW of Cost of 12 years of Machine X
 PW_x = -10,000 -10,000(P/F,8%,4) + -10,000(P/F,8%,8) -500(P/A,8%,12) =
- PW_X = -10,000 10,000(0.7350) -10,000(0.5403) - 500(7.536) = -\$26,521

- In present-worth analysis,
 - the comparison is made in terms of the equivalent present costs and benefits.
- But the analysis doesn't have to be made in terms of present
 - it can be made in terms of a past, present, or future time.
- Although the numerical calculations may look strange, the decision process is unaffected by the selected point in time.

94

96

3/31/2010

- Solution: In Example 14, this problems was solved by Present-Worth analysis at Year 0.
- Here it will be solved by Future-Worth analysis at Year 3.
- Net Future Worth (NFW)
 = FW of Benefits FW of Costs

Annual Cost

- The annual cost method is more accurately described as the method of Equivalent Uniform Annual Cost (EUAC).
- Or where the computation of benefits, it is called the method of Equivalent Uniform Annual Benefits (EUAB).

98

99

Annual Cost Analysis

- In the present worth method, a common analysis period was required for all alternatives.
- Although this is not required for the Annual Cost Method, it is important to understand the circumstances that justify comparing alternatives with different service lives.

3/31/2010

Annual Cost Analysis

- Frequently this method is used for a more-or-less continuing requirement.
- Pumping water from a well is a good example of requirements on a continuing basis.
- Regardless of whether the pump has a service life of 6 years or 12 years, the minimum annual cost should be used to make the selection.

100

102

3/31/2010

3/31/2010

ROR Between Two Alternatives

- Compute the incremental rate of return on cash flow representing the differences between two alternatives.
- Since we want to look at increments of investments, the cash flow for the difference between the alternatives is computed by taking the higher initial-cost alternative minus the lower initial-cost alternative.

34

• If the incremental rate of return is greater than or equal to the predetermined minimum attractive rate of return (MARR),

103

105

- Choose the higher-cost alternative;
- Otherwise, choose the lower-cost alternative.

Exam	ple 1	18		
• Tw	o alter	matives have	e the cash flo	ows:
	Year	Alternative A	Alternative B	
	0	-\$2,000	-\$2,800	
	1	+\$800	+\$1,100	
	2	+\$800	+\$1,100	
	3	+\$800	+\$1,100	
 ra sh	If 4% is te of re nould be	s considered th turn (MARR), e selected?	ne minimum at which alternat	tractive ive

Example 18

3/31/2010

- Solution:
- These two alternatives were previously examined in Example 14 and 16 by Present-Worth and Future-Worth analysis.
- This time, the alternatives will be resolved using a rate-of-return analysis.

Exam	ple	18

- First, tabulate the cash flow that represents the increment of investment between the alternatives.
- This is done by taking the higher initialcost alternative minus the lower initialcost alternative.

Ye	ear Alt	ernative A	Alternative I	B B-A
	0	-\$2,000	-\$2,800	-\$800
	1	+800	+1100	+300
	2	+800	+1100	+300
:	3	+800	+1100	+300
-				

Factor Table - <i>i</i> = 6.00%												
n	n P/F P/A P/G F/P F/A A/P A/F A/G											
1	0.9434	0.9434	0.0000	1.0600	1.0000	1.0600	1.0000	0.0000				
2	0.8900	1.8334	0.8900	1.1236	2.0600	0.5454	0.4854	0.4854				
3	0.8396	2.6730	2.5692	1.1910	3.1836	0.3741	0.3141	0.9612				
4	0,7921	3.4651	4.9455	1,2625	4.3746	0.2886	0.2286	1.4272				
5	0.7473	4.2124	7.9345	1.3382	5.6371	0.2374	0.1774	1.8836				
6	0,7050	4.9173	11.4594	1.4185	6.9753	0.2034	0.1434	2.3304				
7	0.6651	5.5824	15.4497	1.5036	8.3938	0.1791	0.1191	2.7676				
8	0.6274	6.2098	19.8416	1.5938	9.8975	0.1610	0.1010	3.1952				
9	0.5919	6.8017	24.5768	1.6895	11.4913	0.1470	0.0870	3.6133				
10	0.5584	7.3601	29.6023	1.7908	13.1808	0.1359	0.0759	4.0220				
11	0.5268	7.8869	34.8702	1.8983	14.9716	0.1268	0.0668	4.4213				
12	0.4970	8.3838	40.3369	2.0122	16.8699	0.1193	0.0593	4.8113				
13	0.4688	8.8527	45.9629	2.1329	18.8821	0.1130	0.0530	5.1920				
14	0.4423	9,2950	51.7128	2.2609	21.0151	0.1076	0.0476	5.5635				
15	0.4173	9,7122	57.5546	2.3966	23.2760	0.1030	0.0430	5.9260				
16	0.3936	10,1059	63.4592	2.5404	25.6725	0.0990	0.0390	6.2794				
17	0.3714	10.4773	69.4011	2.6928	28.2129	0.0954	0.0354	6.6240				
18	0.3505	10.8276	75.3569	2.8543	30.9057	0.0924	0.0324	6.9597				
19	0.3305	11.1581	81.3062	3.0256	33.7600	0.0896	0.0296	7.2867				
20	0.3118	11.4699	87.2304	3.2071	36.7856	0.0872	0.0272	7.6051				
21	0.2942	11.7641	93.1136	3.3996	39.9927	0.0850	0.0250	7.9151				
22	0.2775	12.0416	98.9412	3.6035	43.3923	0.0830	0.0230	8.2166				
23	0.2618	12.3034	104.7007	3.8197	46.9958	0.0813	0.0213	8.5099				
24	0.2470	12.5504	110.3812	4.0489	50.8156	0.0797	0.0197	8,7951				
25	0.2330	12.7834	115.9732	4.2919	54.8645	0.0782	0.0182	9.0722				
30	0.1741	13.7648	142.3588	5.7435	79.0582	0.0726	0.0126	10.3422				
40	0.0972	15.0463	185.9568	10.2857	154.7620	0.0665	0.0065	12.3590				
50	0.0543	15.7619	217.4574	18.4202	290.3359	0.0634	0.0034	13.7964				
60	0.0303	16.1614	239.0428	32.9877	533.1282	0.0619	0.0019	14,7909				
100	0.0029	16.6175	272.0471	339.3021	5,638,3681	0.0602	0.0002	16.3711				

3/31/2010

- Since the incremental rate of return exceeds the 4% MARR, the increment of investment is desirable.
- Choose the higher-cost, Alternative B.
- Before leaving this example, note the relationship of the rates of return on Alternative A and on Alternative B.

109

Exam	nple ´	18		
• Tw	o altei	rnatives have	e the cash flo	ows:
	Year	Alternative A	Alternative B	
	0	-\$2,000	-\$2,800	
	1	+\$800	+\$1,100	
	2	+\$800	+\$1,100	
	3	+\$800	the cash flows: <u>Alternative B</u> <u>-\$2,800</u> +\$1,100 +\$1,100 +\$1,100 e minimum attractive which alternative	
3/31/2010	If 4% is ite of re nould be	s considered th turn (MARR), e selected?	ne minimum at which alternat	tractive ive

Benefit-Cost Analysis

- For a given interest rate, a B/C Ratio \ge 1 or B – C \ge 1 reflects an acceptable project.
- The B/C analysis method is parallel to that of rate-of-return analysis.
- The same kind of incremental analysis is required when comparing two alternatives.

114

Exa	mple 20		
● V B	Vith i=10%, So enefit-Cost Ar	lve Example 20 aalysis.) by
-			
Year	Alternative A	Alternative B	A – B
0	-\$200.0	-\$131.0	-\$69.0
1	+77.6	+48.1	+29.5
2	+77.6	+48.1	+29.5
3	+77.6	+48.1	+29.5
3/31/2010			115

Example 20
• The benefit-cost ratio for A – B increment is
$B/C = \frac{PW \text{ of Benefits}}{PW \text{ of Costs}} = \frac{29.5(P/A, i, n)}{69.0} = \frac{73.37}{69.0} = 1.06$
 Since the B/C ratio exceeds 1, the increment of investment is desirable. Select the higher cost Alternative A.
3/31/2010 116

Valuation And Depreciation

- Depreciation is the systematic allocation of the cost of a capital asset over its useful life.
- Book value is the original cost of an asset (C), minus the accumulated depreciation of the asset (Σ(Dj)).

117

• Book Value (BV) = C - Σ (Dj)

Valuation & Depreciation Notation

- BV = Book Value
- C = Cost of Property (Basis)
- Dj = Depreciation in Year j
- Sn = Salvage Value in Year n

Items to Consider

3/31/2010

1. Cost of the Property, C (called the basis in tax law).

118

120

- 2. Type of property. Property is classified either as
 - tangible (like machinery) or
 - intangible (like a franchise or a copyright) and
 - \bullet either real property (real estate) or
 - personal property (everything not real property).

Items to Consider

- 3. Depreciable Life in years, n.
- 4. Salvage Value of the property at the end of its depreciable (usable) life, Sn.

Straight-Line Depreciation
• Depreciation Charge in any year, the
Cost of Property minus the Salvage
Value divided by the Number of Years of
Useful Life.

$$Dj = \frac{C-Sn}{n}$$

Modified Accelerated Cost Recovery System Depreciation

- The Modified-Accelerated-Cost-Recovery-System (MACRS) depreciation method .
 - $Dj = C \times factor$

123

MACR	S Depr	eciatior	n Facto	ors
	Modifio	d ACRS (M		
Depreciatio	n for Person	al Property	– Half-Year	Convention
Becovery	3-Year	5 -Year	7-Year	10-Year
vear is:	recoverv	recoverv	recoverv	recoverv
1	33.3	20.0	14.3	10.0
2	44.5	32.0	24.5	18.0
3	14.8	19.2	17.5	14.4
4	7.4	11.5	12.5	11.5
5		11.5	8.9	9.2
6		5.8	8.9	7.4
7			8.9	6.6
8			4.5	6.6
9				6.5
10				6.5
11				3.3
				/
3/31/2010				124

MACRS Depreciation To compute the MACRS depreciation for an item you need to know: 1. Cost (basis) of the item. 2. Property Class All tangible property is classified in one of six classes (3, 5, 7, 10, 15, and 20 years), which is the life over which it is depreciated Residential real estate and nonresidential real estate are in two separate real property classes of 27.5 years and 39 years, respectively. In MACRS, the salvage value is assumed to be zero.

125

126

MACRS: Half-Year Convention

- Except for real property, a half-year convention is used.
- Under this convention all property is considered to be placed in service in the middle of the tax year, and a half-year of depreciation is allowed in the first year.
- For each of the remaining years, one is allowed a full year of depreciation.

3/31/2010

				/
	Modifie	d ACRS (M	ACRS)	0
Depreciatio	n tor Person	alProperty	– Half-Year	Convention
Recovery	3-Year	5 — Year	7-Year	10-Year
year is:	recovery	recovery	recovery	recovery
1	33.3	20.0	14.3	10.0
2	44.5	32.0	24.5	18.0
3	14.8	19.2	17.5	14.4
4	7.4	11.5	12.5	11.5
5		11.5	8.9	9.2
6		5.8	8.9	7.4
7			8.9	6.6
8			4.5	6.6
9				6.5
10				6.5
11				3.3

- A \$5,000 GPS unit has an anticipated \$500 salvage value at the end of its five-year depreciation life.
- Compute the depreciation schedule for the machinery by MACRS depreciation.
- Do the MACRS computation, and compare the results with the values from a straight line depreciation.

129

Inflation

- Inflation is characterized by rising prices for goods and services,
- Deflation produces a fall in prices for goods and services.

135

Inflation

- An inflationary trend makes future dollars have less purchasing power than present dollars.
- This helps long-term borrowers for they repay a loan of present dollars in the future with dollars of reduced buying power.
- The help to borrowers is at the expense of lenders.

136

137

138

3/31/2010

Inflation

- Price changes occur in a variety of ways.
- One method of stating a price change is as a uniform rate of price change per year.
- Notation: f = General Inflation Rate per Interest Period

Example 22

3/31/2010

- One economist has predicted that there will be a 7% per year inflation of prices during the next ten years.
- If this proves to be correct, an item that presently sells for \$10 would sell for what price ten years hence?

- A mortgage will be repaid in three equal payments of \$5,000 at the end of Year 1, 2, and 3.
- If the annual inflation rate, f, is 8% during this period, and
- the investor wants a 12% annual interest rate (i),
- what is the maximum amount he would be willing to pay for the mortgage?

140

E	Exam	ple 23	•				\
	 Th Fir con pu do 	e compu st, the th nverted i rchasing llars.	tati ree nto po	on is a to future p dollars v wer as to	wo- ayı with oda	estep process. ments must be in the same ay's (Year 0)	
	Year	Actual Cash Flow		Multiplied By		Cash flow adjusted To today's (vr. 0) dollars	_
	0					· • • • • • • • • • • • • • • • • • • •	-
	1	+5000	Х	(1+0.08) ⁻¹	=	+4630	
	2	+5000	Х	(1+0.08)	=	+4286	
	3	+5000	Х	(1+0.08) ⁻³	=	+3969	_
	3/31/2010					141	

3/31/2010

- The general form of the adjusting multiplier is (1+f)-n which equals (P/F,f,n).
- Now that the problem has been converted to dollars of the same purchasing power (today's dollars in this example), we can proceed to compute the present worth of the future payments.

142

144

Alternate Solution

- Instead of doing the inflation and interest rate computations separately, you can compute a combined equivalent interest rate per interest period, d.
- $d = (1+f)(1+i) 1 = i + f + (i \times f)$

0.2096. or 20.96%

Factor Table - <i>i</i> = 6.00%											
n	P/F	P/A	P/G	F/P	F/A	A/P	A/F	A/G			
1	0.9434	0.9434	0.0000	1.0600	1.0000	1.0600	1.0000	0.0000			
2	0.8900	1.8334	0.8900	1.1236	2.0600	0.5454	0.4854	0.4854			
3	0.8396	2.6730	2.5692	1.1910	3.1836	0.3741	0.3141	0.9612			
4	0.7921	3.4651	4,9455	1.2625	4.3746	0.2886	0.2286	1.4272			
5	0.7473	4.2124	7.9345	1.3382	5.6371	0.2374	0.1774	1.8836			
6	0.7050	4.9173	11,4594	1.4185	6.9753	0.2034	0.1434	2.3304			
7	0.6651	5.5824	15.4497	1.5036	8.3938	0.1791	0.1191	2.7676			
8	0.6274	6.2098	19.8416	1.5938	9.8975	0.1610	0.1010	3.1952			
9	0.5919	6.8017	24.5768	1.6895	11.4913	0.1470	0.0870	3.6133			
10	0.5584	7.3601	29.6023	1.7908	13.1808	0.1359	0.0759	4.0220			
ii -	0.5268	7,8869	34.8702	1.8983	14.9716	0.1268	0.0668	4.4213			
12	0.4970	8,3838	40.3369	2.0122	16.8699	0.1193	0.0593	4.8113			
13	0.4688	8.8527	45.9629	2.1329	18.8821	0.1130	0.0530	5.1920			
14	0.4423	9,2950	51.7128	2.2609	21.0151	0.1076	0.0476	5.5635			
15	0.4173	9,7122	57.5546	2.3966	23.2760	0.1030	0.0430	5.9260			
16	0.3936	10,1059	63.4592	2.5404	25.6725	0.0990	0.0390	6.2794			
17	0.3714	10.4773	69.4011	2.6928	28.2129	0.0954	0.0354	6.6240			
18	0.3505	10.8276	75.3569	2.8543	30.9057	0.0924	0.0324	6.9597			
19	0.3305	11.1581	81.3062	3.0256	33.7600	0.0896	0.0296	7.2867			
20	0,3118	11,4699	87.2304	3.2071	36.7856	0.0872	0.0272	7.6051			
21	0.2942	11,7641	93,1136	3.3996	39.9927	0.0850	0.0250	7.9151			
22	0.2775	12.0416	98.9412	3.6035	43.3923	0.0830	0.0230	8.2166			
23	0.2618	12.3034	104,7007	3.8197	46.9958	0.0813	0.0213	8.5099			
24	0.2470	12,5504	110.3812	4.0489	50.8156	0.0797	0.0197	8.7951			
25	0.2330	12,7834	115.9732	4.2919	54.8645	0.0782	0.0182	9.0722			
30	0.1741	13,7648	142.3588	5.7435	79.0582	0.0726	0.0126	10.3422			
40	0.0972	15.0463	185,9568	10.2857	154.7620	0.0665	0.0065	12.3590			
50	0.0543	15,7619	217,4574	18.4202	290.3359	0.0634	0.0034	13.7964			
60	0.0303	16.1614	239.0428	32.9877	533.1282	0.0619	0.0019	14.7909			
100	0.0029	16.6175	272.0471	339,3021	5,638,3681	0.0602	0.0002	16.3711			

L

			Fa	ctor Table - i = 12.0	00%			
n	P/F	P/A	P/G	F/P	F/A	A/P	A/F	A/G
1	0.8929	0.8929	0.0000	1.1200	1.0000	1.1200	1.0000	0.000
2	0.7972	1.6901	0.7972	1.2544	2.1200	0.5917	0.4717	0.471
3	0.7118	2.4018	2.2208	1.4049	3.3744	0.4163	0.2963	0.924
4	0.6355	3.0373	4.1273	1.5735	4.7793	0.3292	0.2092	1.358
5	0.5674	3.6048	6.3970	1.7623	6.3528	0.2774	0.1574	1.774
6	0.5066	4.1114	8.9302	(1.9738)	8.1152	0.2432	0.1232	2.172
7	0.4523	4.5638	11.6443	2.2107	10.0890	0.2191	0.0991	2.551
8	0.4039	4.9676	14.4714	2.4760	- 12.2997	0.2013	0.0813	2.9131
9	0.3606	5.3282	17.3563	2.7731	14.7757	0.1877	0.0677	3.257-
10	0.3220	5.6502	20.2541	3.1058	17.5487	0.1770	0.0570	3.584
11	0.2875	5.9377	23.1288	3.4785	20.6546	0.1684	0.0484	3.895
12	0.2567	6.1944	25.9523	3.8960	24.1331	0.1614	0.0414	4.189
13	0.2292	6.4235	28.7024	4.3635	28.0291	0.1557	0.0357	4.468
14	0.2046	6.6282	31.3624	4.8871	32.3926	0.1509	0.0309	4.731
15	0.1827	6.8109	33.9202	5.4736	37.2797	0.1468	0.0268	4.980
16	0.1631	6.9740	36.3670	6.1304	42.7533	0.1434	0.0234	5.214
17	0.1456	7.1196	38.6973	6.8660	48.8837	0.1405	0.0205	5.435
18	0.1300	7.2497	40.9080	7.6900	55.7497	0.1379	0.0179	5.642
19	0.1161	7.3658	42.9979	8.6128	63.4397	0.1358	0.0158	5.8375
20	0.1037	7.4694	44.9676	9.6463	72.0524	0.1339	0.0139	6.0203
21	0.0926	7.5620	46.8188	10.8038	81.6987	0.1322	0.0122	6.191
22	0.0826	7.6446	48.5543	12.1003	92.5026	0.1308	0.0108	6.3514
23	0.0738	7.7184	50.1776	13.5523	104.6029	0.1296	0.0096	6.5010
24	0.0659	7.7843	51.6929	15.1786	118.1552	0.1285	0.0085	6.640
25	0.0588	7.8431	53.1046	17.0001	133.3339	0.1275	0.0075	6.7708
30	0.0334	8.0552	58.7821	29.9599	241.3327	0.1241	0.0041	7.2974
40	0.0107	8.2438	65.1159	93.0510	767.0914	0.1213	0.0013	7.898
50	0.0035	8.3045	67.7624	289.0022	2,400.0182	0.1204	0.0004	8.159
60	0.0011	8.3240	68.8100	897.5969	7,471.6411	0.1201	0.0001	8.266
100	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	8,3332	69.4336	83.522.2657	696.010.5477	0.1200		8,3321

