
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| The Application Of
 Engineering Economics |
| :--- | | • Valuation And Depreciation |
| :--- |
| \bullet Straight Line Depreciation |
| \bullet Modified Accelerated Cost Recovery |
| System Depreciation Inflation |
| \bullet Effect Of Inflation On A Rate Of Return |
| |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Interest is computed and credited at the end of each interest period, and is allowed to accumulate from one interest period to the next.

$$
F=P(1+i)^{n}
$$

F $=$ the totalamount of money accumulated
$\mathrm{P}=$ Present Value of Money
$\mathrm{i}=$ interest rate (decimal form)
$\mathrm{n}=$ Number of interest periods
3/31/2010
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\left.\begin{array}{|l|}\hline \text { The Time Value of Money } \\ \hline\end{array} \begin{array}{l}\text { • Money has the ability to earn interest. } \\ \text { • Its value increases with time. } \\ \text { • Since money increases as we move } \\ \text { forward from the present to the future, it } \\ \text { also must decrease in value if we move } \\ \text { backward from the future to the present. }\end{array}\right\}$
\qquad
\qquad
\qquad
Since money increases as we move
\qquad
\qquad
\qquad

31/2010
14 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
and "Timing."

Year	Cash Flow	Comment
Beginning of Year 1	$-\$ 4500$	Car is purchased "now" for $\$ 4500$
End of Year 1	$-\$ 350$	Maintenance cost per year
End of Year 2	$-\$ 350$	Maintenance cost per year
End of Year 3	$-\$ 350$	Maintenance cost per year
End of Year 4	$-\$ 350$	Maintenance cost per year $\$ 2000$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- At a 10% per year interest rate, how much is $\$ 500$ now equivalent to three years from now?
- $\$ 500$ now will increase 10% in each on the three years.

Now	End of 14t year	End of 2nd year	End of 3 drd year
\$500.00	$500+10 \%(500)$	$550+10 \%(550)$	$605+10 \%(605)$
	\$550.00	\$605.00	\$665.50
- The $\$ 500$ now is equivalent to $\$ 665.50$ at the end of three years.			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Equivalence in Engineering Economics	
If we wish to select the better of two alternatives, First, we have to compute the cash flows.	
Year Alternative A Alternative B 0 $-\$ 2000$ $-\$ 2800$ 1 $+\$ 800$ $+\$ 1100$ 2 $+\$ 800$ $+\$ 1100$ 3 $+\$ 800$ $+\$ 1100$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

- At a 10% per year interest rate, how much is $\$ 500$ now equivalent to three years from now?
- $\$ 500$ now will increase 10% in each on the three years.

Now	End of $^{1 \text { st }}$ year	End of 2 ${ }^{\text {nd }}$ year	End of 3 ${ }^{\text {rd }}$ year
$\$ 500.00$	$500+10 \%(500)$	$550+10 \%(550)$	$605+10 \%(605)$
	$\$ 550.00$	$\$ 605.00$	$\$ 665.50$

- The $\$ 500$ now is equivalent to $\$ 665.50$ at the end of three years.

3/31/2010
28
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 4
\bullet Using a compound interest table:
$\bullet P=\boldsymbol{F}(\boldsymbol{P} / \boldsymbol{F}, \boldsymbol{i}, \boldsymbol{n})=3000(\boldsymbol{P}=\boldsymbol{F}, 12 \%, 4)=$
$\$ 1,906.50 \quad 3000(0.6355)=$
\bullet The solution based on the compound
interest table is slightly different from the
solution using a calculator.
- The compound interest tables are
considered to be sufficiently accurate to
solve engineering economic problems

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Factor Table - $i=12.00 \%$								
n	P/F	P/A	P/G	F/P	F/A	A/P	AF	A/G
!	0.982	0.829	0.0000	1.1220	1.0000	1.1220	1.000	0.0000
	0.979	${ }^{1.6501}$	0.7972	1.234		-		${ }_{\substack{0 \\ 0.9271 \\ 0.926}}$
$\stackrel{3}{4}$	0	2,	$\underset{\substack{22288 \\ 41273}}{20}$	1.12949 1575	3374 47793 4	-	${ }^{0.2963}$	${ }_{\substack{0924 \\ 1389}}^{\substack{138}}$
;		3, 3.048	6, 3.290	${ }_{1}^{1.633}$	6,358	0.274	0.1574	${ }^{1.7276}$
${ }^{6}$	(0.566	${ }_{4}^{4.5638}$	(1.0302	19778 22107 1	-	${ }^{2}$	${ }_{0}^{0.0931}$	${ }_{2}^{21250}$
8	0.4139	4.9676	${ }^{14.4714}$	2.4760	122997	0.2013	0.0813	2931
9	0.3606	${ }^{53828}$	${ }^{1173638}$	27731	14.757	0.1877	${ }^{0.0067}$	${ }^{3.2574}$
${ }_{11}^{10}$	(0.320	cisis	(20.3511	(3.1.4888	${ }_{20}^{12.6846}$	0.1.1784	${ }_{\text {a }}$	${ }_{\substack{3.3887 \\ 3.853}}$
12	0.2367	6.194	239523	3.8880	24.131	0.1614	0.094	41.897
13	${ }^{0.2029}$	${ }_{6}^{6,4235}$	${ }^{28,724}$	${ }_{4}^{4} 8635$	288291	${ }^{0.1557}$	0.035	4.4683
${ }_{15}$	-	${ }_{6}^{6.682}$	cose		- 323296	O.1.399	0	
16	${ }_{0}^{0.1681}$	-6.9740	${ }_{3}^{3063670}$	${ }_{6} 51.1304$	4	0.144	0.0 .034	${ }_{5}^{212147}$
17	0.1456	7.1196	${ }^{3889973}$	68660	488837	0.445	0.025	5.433
18	0.130	12997	40.9880	7.690	555749	0.1379	0.079	5.6427
19	0.1161	${ }^{136888}$	1298979	${ }_{8}^{86128}$	${ }^{63,397}$	-1.1388	0.018	${ }_{5}^{58375}$
${ }_{21}^{20}$	${ }_{0}^{0.1027}$	${ }_{\substack{1,6520 \\ 1,520}}^{\text {7, }}$	$\underset{\substack{4.68188}}{4.968}$	${ }^{\text {pobebes }}$	cin	0.1138	${ }_{0}^{0.0012}$	(61922
${ }_{2}$	${ }^{0.0086}$	${ }^{1.646}$	48	${ }^{1212003}$	${ }_{9} 235226$	${ }^{0} 1.1388$	0.0108	${ }_{6}^{6,5314}$
23		,	ciolinc			${ }^{0.12285}$	${ }^{0} 0.0096$	${ }_{\substack{6.5010}}^{6.406}$
${ }^{25}$	0.0088	18.831	5.1096	17,0001	133339	0.1275	0.0075	${ }^{6}$
3	0.0334	${ }_{8} 8052$	58.8821	29.9599	${ }^{2413,327}$	0.1241	0.0041	${ }^{7} 12894$
50	(0.0.0.0	\% 82438	6.11169 6.1764	c.ay	\%	俍	${ }_{0}^{0.0000}$	${ }_{8} 81.1597$
${ }^{60}$	0.0011	88.320	${ }_{688100}$	97.5999	2,411.6411	0.1201	0.000	${ }_{8}^{8.264}$
100		83.332	6.436	88.522 .657	606,00.437	0.1220		8.321

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Example 2

Single Payment Compound Amount Formula

- The present sum \boldsymbol{P} increases in \boldsymbol{n} periods to $P(1+i)^{n}$.
- This gives the relation between a present sum \boldsymbol{P} and its equivalent future sum \boldsymbol{F}.
- $F=$ Present Sum $\boldsymbol{x}(1+i)^{n}=P(1+i)^{n}$
- In functional notation it is written:

$$
F=P(F / P, i, n)
$$

3/31/2010
39
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
A=F\left[\frac{i}{(1+i)^{n}-1}\right]
$$

3/31/2010
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
sinking fund factor

$$
\boldsymbol{A} / \boldsymbol{F}=(\boldsymbol{F} / \boldsymbol{A})^{-1}=\frac{\boldsymbol{i}}{(1+\boldsymbol{i})^{n}-1}
$$

- The notation ($\boldsymbol{A} / F, \boldsymbol{i} \%, \boldsymbol{n}$) is helpful setting up the problem, and can be obtained from compound interest tables.
3/3/12010
45
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 5
- If $\$ 100$ is deposited at the end of each year in a savings account that pays 6% interest per year, - How much will be in the account at the end of five years? - Solution: Given: A $\$ 100, \mathrm{~F}=$ Unknown, $\mathrm{n}=5$ and $\mathrm{i}=6 \%$

\qquad
\qquad a savings account that pays 6\% interest per year, \qquad
How much will be in the account at the end of five years? \qquad
Given:
$A=\$ 100, F=$ Unknown, $n=5$ years, and $\mathrm{i}=6 \%$.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
expression for F in the equation and obtain the following equation.

$$
A=P\left[\frac{i(1+\boldsymbol{i})^{n}}{(1+\boldsymbol{i})^{n}-1}\right]
$$

3/31/2010
51
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
P=A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]
$$

3/31/2010
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Factor Table - $i=1.00 \%$								
n	P/F	P/A	P/G	F/P	F/A	$A P$	AF	A/G
1	0.991	0.991	0.0000	1.0100	1.0000	1.10100	1.0000	0.0000
2	${ }_{\substack{0.9033 \\ 0.9706}}$	1, 19	co.0.083	$\xrightarrow[\substack{1.0201 \\ 1003 \\ 1}]{ }$	$\substack{20100 \\ \text { jo:00 }}$	(0,075	${ }_{\substack{0.4375 \\ 0.350}}^{0.0}$	O.0.975
3 4 4	- 0.9 .960	2,	$\substack{29.815 \\ 5.804}$		-	-	${ }_{0}^{0.2463}$	${ }_{\text {cher }}$
5	0.9515	4.8584	9.60103	1.0510	5.1010	0.2386	${ }^{0.1990}$	1.8801
$\stackrel{6}{7}$	-0.920			${ }_{\text {l }}^{1.021215}$	${ }_{\substack{6 \\ \hline 12123 \\ 1,13}}$	${ }_{\substack{0}}^{0.1725}$	${ }_{0.1386}^{0.168}$	2.29602
8	0.9235	${ }^{1.6517}$	26.3812	1.089	88887	0.1307	0.1207	3,4178
9	0.943	8.650	${ }^{33.6999}$	1.037	9.3685	0.1167	0.1067	39337
10	-0.033		¢		${ }_{\substack{10.4622 \\ 11.568}}^{1.20}$	${ }_{0}^{0.1056}$	${ }_{0}^{0.0085}$	${ }_{\substack{4.4179 \\ 4.905}}$
12	${ }_{0}^{0.8887}$	${ }^{11.2531}$	${ }^{60.5687}$	1.1268	12.2682	${ }_{0} 0.0888$	0.078	${ }_{5,3815}$
${ }^{13}$	0.8887	${ }^{121,137}$	${ }^{2} 1.1126$	1.1381	${ }_{1}^{138093}$	0.0834	0.0024	${ }_{5}^{58807}$
(19	coin			${ }_{\text {li.1.60 }}$		${ }_{\text {a }}^{0.07211}$	${ }_{0}^{0.0 .062}$	${ }_{\text {ciside }}$
${ }^{16}$	0.8328	14.7179	10.7238	1.12126	112.259	0.0679	0.0579	${ }^{2} 28886$
17	0.844	${ }_{15}^{15.523}$	${ }^{120.7834}$	${ }^{1.1 .183}$	[18,304	${ }^{0.0643}$	${ }_{0}^{0.0543}$	cin
(18	(0.8360	${ }_{\substack{1.3,283 \\ 17.220}}^{1.20}$	1349857 149.850	${ }_{1.2081}^{1.1961}$		${ }_{0}^{0.0610}$	${ }_{0}^{0.0 .0851}$	¢
${ }^{20}$	0.8195	18,9856	16.58 .664	12.222	22.2190	0.058	0.085	9.1694
${ }_{21}^{21}$	${ }^{0.8174}$	1.8.870	${ }_{\substack{181.650 \\ 198563}}$	${ }_{1}^{12324}$	${ }_{\substack{23,2392}}^{24.476}$		${ }^{0}$	
${ }_{2}^{22}$	-	-	(198.663	${ }_{1}^{12,242}$			${ }_{0}^{0.0 .039}$	
${ }_{24}^{24}$	${ }_{0}^{0.7876}$	${ }_{212243}^{20183}$	234.1800	1.2697	26.9735	0.0971	0.0037	11.10237
${ }^{25}$	0.7798	-2, 21.232	${ }^{2} 5282895$	${ }_{1}^{1.234}$	28242	${ }^{0.0 .458}$	${ }^{0.0034}$	${ }_{1}^{1123812}$
过 40	${ }_{0}^{0.6417}$	ciser	${ }_{59}^{39.8561}$	${ }_{1}^{1,488}$	${ }_{488864}$	0.0305	0.0025	${ }_{18.176}$
50	0.0680	${ }^{39,1861}$	${ }^{879.4176}$	1.646	${ }^{64.4632}$.0.0235	0.0155	${ }_{2}^{22463}$
${ }^{60}$	${ }_{0}^{0.5354}$	cosms		${ }^{1.8167}$	cois	0	${ }_{0}^{0.0022}$	${ }_{\substack{26.3332}}^{2638}$
100	0.369	6.0289		2,748				

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sinking Fund	$(A / F, i, n)$
Capital Recovery	$(A / P, i, n)$
Present Worth	$(P / A, i, n)$

3/31/2010
56
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
i_{e}=(1+r / m)^{m}-1
$$

- $r=$ Nominal Annual Interest Rate
- $\boldsymbol{m}=$ Number of Compound Periods per year
- $\boldsymbol{r} / \boldsymbol{m}=$ Effective Interest Rate per period
3/31/2010
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
A gradient series is a series of annual payments in which each payment is greater than the previous one by a constant amount, \boldsymbol{G}.

$$
\begin{aligned}
& A=G\left[\frac{1}{i}-\frac{n}{(1+\boldsymbol{i})^{n}-1}\right] \\
& A / G=\frac{1}{i}-\frac{n}{(1+\boldsymbol{i})^{n}-1} \\
& (A / G, i \%, \boldsymbol{n})=\frac{1}{\boldsymbol{i}}-\frac{n}{\boldsymbol{i}}(A / F, \boldsymbol{i} \%, \boldsymbol{n})
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

| Example 10 |
| :--- | :--- |
| - The maintenance on a machine is
 expected to be \$155 at the end of the
 first year, and it is expected to increase
 \$35 each year for the following seven
 years.
 - What sum of money should be set aside
 to pay the maintenance for the eight-year
 period?
 Using a 6\% interest.
 ${ }^{3312010}$ |

\qquad
\qquad expected to be $\$ 155$ at the end of the first year, and it is expected to increase \qquad $\$ 35$ each year for the following seven years. \qquad
What sum of money should be set aside to pay the maintenance for the eight-year period?
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

- For the situation in Example 10, we want to know uniform annual maintenance cost.
- Or to compute an equivalent A for the maintenance costs to be experienced.
- Solution:
The equivalent uniform annual maintenance cost is:
- $\mathrm{A}=155+35(\mathrm{~A} / \mathrm{G}, 6 \%, 8 \mathrm{yrs})=155+35(3.195)$

$$
=\$ 266.83
$$

3/31/2010
68
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- It can be computed from the given tabulated factors:
$(F / G, i, n)=\frac{(F / A, i, n)-n}{i}=(F / A, i, n) x(A / G, i, n)$
If $\boldsymbol{i}=10 \%, \boldsymbol{n}=12$ years, then $(F / G, 10 \%, 12 \mathrm{yrs})=$
$=(\boldsymbol{F} / \boldsymbol{A} 10 \%, 12 \mathrm{yrs}) \times(\boldsymbol{A} / \boldsymbol{G}, 10 \%, 12 \mathrm{yrs})$

$$
=21.384 \times 4.388=93.833
$$

3/31/2010
70
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Uniform Payment Series						
Factor	To Find	Given	Function Notation	Formula		
Sinking Fund	A	F	$[A / F, r \%, n]$	$A=F\left[\frac{e^{r}-1}{e^{m}-1}\right]$		
Capital Recovery	A	P	$[A / P, r \%, n]$	$A=P\left[\frac{e^{r}-1}{1-e^{-r n}}\right]$		
Compound Amount	F	A	$[F / A, r \%, n]$	$F=A\left[\frac{e^{m}-1}{e^{r}-1}\right]$		
Present Worth	P	A	$[P / A, r \%, n]$	$P=A\left[\frac{1-e^{-r n}}{e^{r}-1}\right]$		

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\boldsymbol{A}=\$ 500, \boldsymbol{r}=0.05, \boldsymbol{n}=5 \text { years }
$$

$$
F=A[F / A, r, n]=A\left[\frac{e^{r n}-1}{e^{r}-1}\right]
$$

$$
F=500\left[\frac{e^{0.05(5)}-1}{e^{0.05}-1}\right]=\$ 2,769.84
$$

31/2010
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Present Worth
- Present Worth Analysis is most frequently used to determine the present value of future money receipts and disbursements. - We might want to know the present value of an income producing property, like an oil well. - This should provide us with an estimate of the price at which the property could be bought or sold.
$\underbrace{}_{\text {z3312010 }}$

\qquad
\qquad
\qquad
\qquad
\qquad
This should provide us with an estimate of the price at which the property could
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Two alternatives have the following cash flows:

Year	Alternative A	Alternative B
0	$-\$ 2,000$	$-\$ 2,800$
1	$+\$ 800$	$+\$ 1,100$
2	$+\$ 800$	$+\$ 1,100$
3	$+\$ 800$	$+\$ 1,100$

- At 4% interest rate, which alternative should be selected?
3/31/2010
89
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
flows:

Year	Alternative A	Alternative B
0	$-\$ 2,000$	$-\$ 2,800$
1	$+\$ 800$	$+\$ 1,100$
2	$+\$ 800$	$+\$ 1,100$
3	$+\$ 800$	$+\$ 1,100$

At 4\% interest rate, which alternative should be selected?
3/31/2010
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Year	Alternative A	Alternative B
0	$-\$ 2,000$	$-\$ 2,800$
1	$+\$ 800$	$+\$ 1,100$
2	$+\$ 800$	$+\$ 1,100$
3	$+\$ 800$	$+\$ 1,100$

- If 4% is considered the minimum attractive rate of return (MARR), which alternative should be selected?
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- First, tabulate the cash flow that represents the increment of investment between the alternatives.
- This is done by taking the higher initialcost alternative minus the lower initialcost alternative.

Year	Alternative A	Alternative B	B-A
0	$-\$ 2,000$	$-\$ 2,800$	$-\$ 800$
1	+800	+1100	+300
2	+800	+1100	+300
3	+800	+1100	+300

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

	Rate of Return
Alternative A	9.7%
Alternative B	8.7%

- The correct answer to this problem has been shown to be Alternative B, even though Alternative A has a higher rate of return.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
governmental economic analyses, the dominant method of analysis is the Benefit-Cost Ratio (B/C).
- It is simply the ratio of benefits divided by costs, taking into account the time value of money.
B / C Ratio $=\frac{P W \text { Benefits }}{P W \text { costs }}=\frac{F W \text { Benefits }}{F W \text { costs }}=\frac{E U A B}{E U A C}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 20			
- With $i=10 \%$, Solve Example 20 by Benefit-Cost Analysis.			
Year	Alternative A	Alternative B	A-B
0	-\$200.0	-\$131.0	-\$69.0
1	+77.6	+48.1	+29.5
2	+77.6	+48.1	+29.5
3	+77.6	+48.1	+29.5
${ }_{33120010}$			

Example 20
- The benefit-cost ratio for $A-B$ increment is
$B / C=\frac{P W \text { of Benefits }}{P W \text { of Costs }}=\frac{29.5(P / A, i, n)}{69.0}=\frac{73.37}{69.0}=1.06$
- Since the B / C ratio exceeds 1 , the increment of investment is desirable. - Select the higher cost Alternative A.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| Valuation And Depreciation |
| :--- | | - Depreciation is the systematic allocation |
| :--- |
| of the cost of a capital asset over its |
| useful life. |
| - Book value is the original cost of an |
| asset (C), minus the accumulated |
| depreciation of the asset $(\Sigma(\mathrm{Dj})$. |
| - Book Value (BV) $=\mathrm{C}-\Sigma(\mathrm{Dj})$ |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Depreciation Charge in any year, the Cost of Property minus the Salvage Value divided by the Number of Years of Useful Life.

$$
D j=\frac{C-S n}{n}
$$

3/31/2010
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Straight Line Depreciation
\bullet You buy a styling new car for $\$ 15,000$ with an anticipated salvage value of $\$ 1,500$ at the end of its five-year depreciation life. • Compute the depreciation schedule for the car by the straight line method.
$\underbrace{\text { 3312020 }}$

\qquad
\qquad with an anticipated salvage value of $\$ 1,500$ at the end of its five-year \qquad depreciation life.

- Compute the depreciation schedule for \qquad
\qquad
\qquad
\qquad

Modified Accelerated Cost Recovery System Depreciation
•The Modified-Accelerated-Cost- Recovery-System (MACRS) depreciation method . $\qquad \mathrm{Dj}=\mathrm{C} \times$ factor $\underbrace{}_{\text {з3120010 }}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Depreciation for Personal Property-Half-Year Convention										
Recovery	$3-Y e a r$	$5-Y e a r$	$7-Y e a r$	$10-\mathrm{Year}$		year is:	recovery	recovery	recovery	recovery
:---:	:---:	:---:	:---:	:---:						
1	33.3	20.0	14.3	10.0						
2	44.5	32.0	24.5	18.0						

3	14.8	19.2	17.5	14.4
4	7.4	11.5	12.5	11.5
5		11.5	8.9	9.2
6		5.8	8.9	7.4
7			8.9	6.6
8			4.5	6.6
9			6.5	
10			6.5	
11			3.3	

124
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
straight line depreciation.
$\mathrm{Dj}=(5000-500) / 5=900$

Year	Dj	BV @ end of the year
1	900	$5000-900=4100$
2	900	$4100-900=3200$
3	900	2300
4	900	1400
5	900	500

130
\qquad
\qquad

\qquad
\qquad

- Five-year property class.
- Salvage value Sn is assumed to be zero for \qquad
- Use depreciation factors from MACRS Table
\qquad
\qquad
\qquad

3/31/2010

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 23 - A mortgage will be repaid in three equal payments of $\$ 5,000$ at the end of Year 1, 2, and 3. - If the annual inflation rate, f , is 8% during this period, and - the investor wants a 12% annual interest rate (i), - what is the maximum amount he would be willing to pay for the mortgage?

\qquad
\qquad payments of $\$ 5,000$ at the end of Year 1, 2, and 3. \qquad
If the annual inflation rate, f , is 8% during this period, and \qquad
the investor wants a 12% annual interest rate (i), \qquad
what is the maximum amount he would be willing to pay for the mortgage?

- The computation is a two-step process.
- First, the three future payments must be converted into dollars with the same purchasing power as today's (Year 0) dollars.

Year	Actual Cash Flow	Multiplied By	Cash flow adjusted To today's (yr. 0) dollars		
0					
1	+5000	X	$(1+0.08)^{-1}$	$=$	+4630
2	+5000	X	$(1+0.08)^{-2}$	$=$	+4286
3	+5000	X	$(1+0.08)^{-3}$	$=$	+3969
$3 / 31 / 2010$					$\mathbf{1 4 1}$

\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Instead of doing the inflation and interest rate computations separately, you can compute a combined equivalent interest rate per interest period, d.
- $d=(1+f)(1+i)-1=i+f+(i x f)$
- For this cash flow,

$$
d=0.12+0.08+0.12(0.08)=
$$

0.2096 . or 20.96%
3/31/2010
144
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Factor Table $i=$ i 6.00%								
n	PF	P／A	PG	${ }_{\text {FP }}$	F／A	AP	AF	${ }^{4} /$
		，					${ }_{\substack{\text { a }}}^{\substack{\text { amas }}}$	
	${ }_{\text {a }}^{0.0}$	，					${ }_{\text {a }}^{\text {ain }}$	coide
5	${ }_{\text {a }}^{\text {and }}$	\％	，ines			${ }_{\substack{0}}^{0.354}$	${ }^{\text {a }}$	
	coick				，		（0，	$\underset{\substack { 2 \\ \begin{subarray}{c}{2,196{ 2 \\ \begin{subarray} { c } { 2 , 1 9 6 } } \\{\substack{198}}\end{subarray}}{ }$
${ }_{10}{ }^{\circ}$	，						aneme	
＂12		\％		${ }^{\text {comen }}$		${ }_{\substack{\text { a }}}^{\substack{0.128 \\ 0.108}}$	${ }_{\text {a }}^{0}$	${ }_{4}^{4813}$
${ }^{3}$	${ }^{0.4085}$	$\substack{\begin{subarray}{c}{8027 \\ 980} }} \end{subarray}$				${ }^{\text {a }}$	anso	（190
${ }_{10}^{16}$	，	，\％al				cilam	coin	
，		，				coick		
，	coill	${ }_{\text {coser }}$			coin	cois		
${ }_{2}^{2}$	\cdots					cosion	${ }^{2032}$	
${ }_{25}^{24}$	$\xrightarrow{\text { aizso }}$	${ }^{12,584}$		，	cisme	cosm	${ }^{2099}$	
30			，		coin	cos	coin	
\％	comb		，					14,500

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fater Table $-i=12.00 \%$								
n	PF	P／A	P／G	F／P	F／A	${ }_{\text {AP }}$	${ }_{\text {a }}$	${ }^{\prime \prime}$
	arse	¢	\％omo	${ }_{1}^{12} 120$	1.000	${ }^{1.200}$	1 Iman 0	smom
				$\xrightarrow{\substack{1254 \\ 12040}}$		cois		$\underbrace{\substack{26}}_{\substack{0.977 \\ 0.378}}$
5	${ }_{0}^{0.0}$	，		，		${ }^{0.0}$	${ }_{\substack{0}}^{\substack{2092 \\ 0.454}}$	$\xrightarrow{\substack{13, 1.726}}$
\％	${ }_{0}^{0.4545}$	\％		（1273）			${ }_{\substack{0}}^{0.102}$	$\substack{\begin{subarray}{c}{2120 \\ 2 \leq 35} }} \end{subarray}$
\％		${ }_{5}^{48296}$		${ }_{2}^{2,7 m 1}$		${ }^{20.183}$	coin	$\underset{\substack{2931 \\ i 234}}{\substack{294}}$
111					，	${ }_{\text {a }}^{0}$		
咢	${ }^{20239} 0$			（isem		$\xrightarrow{0.104}$		$\xrightarrow{41285}$
${ }_{15}^{14}$	${ }^{2}$	$\underset{\substack{\text { ciss }}}{\substack{\text { cis }}}$				${ }_{\text {a }}$		cis
${ }_{10}^{16}$		，			${ }_{\text {coser }}$	${ }_{\substack{0}}^{0.104}$ 0，465	20．20	
${ }_{18}^{18}$	${ }_{\text {a }}^{0.150}$					${ }_{0}^{0.138}$	ciol	
${ }_{21}^{20}$	${ }^{\text {a }}$	${ }_{\substack { \text { c，} \\ \begin{subarray}{c}{1,5020{ \text { c，} \\ \begin{subarray} { c } { 1 , 5 0 2 0 } }\end{subarray}}$	，usit			${ }^{0} 0$	${ }^{0019}$	（602
${ }_{2}^{23}$	${ }_{\text {a }}^{\text {ajers }}$			${ }_{\substack{\text { a }}}^{121033}$		${ }_{\text {a }}^{\text {a }}$	coins	${ }_{\substack{63514 \\ 6.5000}}^{\substack{\text { a }}}$
$\underbrace{24}_{25}$	Omes	$\xrightarrow{17883}$		cin	coill	20，	come	
号䞨	${ }_{\text {a }}^{0.038}$	（8032	，	cosisisis		${ }_{0}$	$\substack{\text { ancul } \\ \text { and }}$	
	$\xrightarrow{\substack{\text { ances } \\ \text { O．0．1 }}}$	（830				coin	${ }_{\text {and }}$	
100		Sun	6， 313	88.32763	6mansin	a，2m		8321

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

