General Chemistry Review

Helping you remember what you learned, oh, so long ago.

Topics - (Until we run out of time)

- The mole
- Stoichiometry
- Limiting Reactants
- Solution Chemistry
- Molarity
- Dilution
- Stoichiometry
- Gases
- Gas Laws
- Stoichiometry
- Thermochemistry
- Using Thermochemical Equations
- Measuring heat change
- Equilibria
- Equilibrium constants
- Le Châtelier's Principle
- Electrochemistry
- Redox reactions
- Volteic cells
- Electrolysis

THE MOLE

The Mole (simply a number)

- Mole - number of atoms in 12.00 grams of ${ }^{12} \mathrm{C}$.
- 1 mole $=6.022 \times 10^{23}$ of anything.
- Molar mass: mass of one more of a substance.
- Applies to element as well as compounds.
- Used to convert between mass and moles.

Gram to Mole Conversion

How many moles of silver atoms are in 15.0 grams of silver?
Molar mass of $\mathrm{Ag}=107.87 \mathrm{~g} / \mathrm{mol}$

How many grams of SO_{3} are in 4.0 moles SO_{3} ?

Mole to Mole conversions

- Using balanced chemical equations to convert between substances.
- For the balanced equation: $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$, How many moles of HCl will be produced when 2.5 moles Cl_{2} reacts with an excess of H_{2}.

Combining the conversions

- How many grams of HCl would be produced when 4.5 grams of Cl_{2} reacts with an excess of H_{2} ? (In other words, what is the theoretical yield...)

Limiting Reactant

- If given measured information about both reactants...
- Work the problem twice and determine which produces the least amount of product.
- What is the theoretical yield of NaCl if 2.5 g Na reacts with $3.5 \mathrm{~g} \mathrm{Cl}_{2}$?

Limiting reactant

- How many grams of SO_{3} will be produced if 3.0 moles of SO_{2} reacts with 35.0 grams of O_{2} ?

Solution - a homogeneous mixture

- Molarity $=$ moles of solute per liters of solution

$$
\text { molarity }=\frac{\text { moles solute }}{\text { L of solution }}
$$

- What is the molarity of a solution prepared by dissolving 5.0 grams of NaOH in enough water to prepare 250.0 mL of solution?

Molarity as a conversion factor

- How many grams of sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ is contained in 2.0 L of a 0.105 M solution?

Dilution: $M_{1} V_{1}=M_{2} V_{2}$

- Solution of high concentration diluted by adding water to a solution of lower concentration.
- What is the molarity of a solution prepared by dissolving 15.0 mL of 8.0 M HCl with 85.0 mL of water?

Molarity and Stoichiometry

- $M \times V=$ moles...a new road to moles
- What mass of NaCl is required to react with 25.0 mL of $0.105 \mathrm{MAgNO}_{3}$. $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$

GASES

Gases

- Molecules very far apart (vast amount of empty space).
- No defined volume or shape.
- Pressure = force/area
- Common units: atm and mmHg (torr)
- I atm $=760 \mathrm{mmHg}$ (torr)

Ideal gas equation

- $P V=n R T \quad(R=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K})$
- What is the volume occupied by 5.0 grams of CO_{2} at $25^{\circ} \mathrm{C}$ and 3.5 atm .

Gas Laws (Changing conditions)

- Relationships can be derived from PV=nRT
- P,V relationship - inverse proportion (Boyle's Law)
- V,T relationship - direct proportion (Charles's Law)
- V, n relationship - direct proportion (Avogadro's Law.)

Change of conditions

- What is the volume of a gas at $300^{\circ} \mathrm{C}$ if the gas occupies 150 mL at $150^{\circ} \mathrm{C}$?

Gases and stoichiometry

- What volume of H_{2} at STP is produced at STP if $5.0-\mathrm{g}$ of Na is dropped in water?
$\mathrm{Na}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
- Handy conversion factor at STP: Molar volume of a gas.
- 22.4 L/mol

Heat exchange in chemical reactions

THERMOCHEMISTRY

Thermochemical Equaitons

- Heat - transfer of thermal energy
- Thermochemical equation - gives balanced reaction and enthalpy (heat at constant P).
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}=-802.3 \mathrm{~kJ}$
- Can be used to convert between $\mathrm{kJ} \leftrightarrow \rightarrow$ mol

Using a thermochemical equation

- How much heat is liberated during the combustion of $30.0-\mathrm{g}$ of methane.

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-802.3 \mathrm{~kJ}
$$

Measurements of heat changes

- $\mathrm{q}=$ mass \times specific heat \times change in temp.
- $q=m \times s \times \Delta T$
- What is the specific heat of an unknown metal if $25.0-\mathrm{g}$ of the metal at $100.0^{\circ} \mathrm{C}$ is placed in $100.0-\mathrm{g}$ of water at $25.0^{\circ} \mathrm{C}$ and the final temperature reached is $28.0^{\circ} \mathrm{C}$? The specific heat of water is $4.184 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right.$. $)$

Dealing with reversible reactions

- For any reaction:

$$
\mathrm{aA}(\mathrm{~g})+\mathrm{bB}(\mathrm{~g}) \rightleftharpoons \mathrm{cC}(\mathrm{~g})+\mathrm{dD}(\mathrm{~g})
$$

- An equilibrium expression can be created:

$$
\mathrm{K}_{\mathrm{eq}}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

- Only include gases or aqueous substance.
- That is, leave out solids and liquids
- Can replace concentrations with pressures (in atm.)

Le Châtelier's Principle

- When a system at equilibrium is disturbed, the system shifts in a direction that minimizes the disturbance.
Concentration
- Pressure (or volume)
- Temperature

Change in concentration

Add a substance, makes more (must be gas or aqueous to matter.)

- $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})$
- Add more CO, rxn. shifts \qquad
- Remove some H_{2}, rxn. shifts \qquad

Change in pressure

- Increase pressure (by decreasing volume), shifts to try to bring down the pressure
- Shifts towards the side with fewer moles of gas.
- $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})$
- If the above system is at equilibrium and the pressure is increased, System will shift to the \qquad

Change in temperature

- Must know if reaction is
- endothermic (positive $\Delta \mathrm{H}$) or
- exothermic (negative $\Delta \mathrm{H}$)
- If exothermic, put heat in as a product.
- If endothermic, put heat in as a reactant.
- Raising the temperature is adding heat.
- Lowering the temperature is removing heat.

Change in temperature

- For the reaction:
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=128.1 \mathrm{~kJ}$
- What conditions of temperature will shift the reaction to produce more products?

Redox reactions

- Electron transfer reaction.
- Noted by a change in oxidation states.
- $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{Cu}(\mathrm{s})$
- LEO says GER
- Loss of electrons, oxidation
- Gain of electrons, reduction

Voltaic cells

Redox reaction is separated into half reactions so that the transferred electrons must travel across a wire. (Electrical energy)

- Anode - oxidation A Voltaic Cell
- Cathode -reduction

Cell Potential EMF (E) Voltage (V)

Electrolytic Cells

- Consumes electrical energy to drive an nonspontaneous reaction.
- Amps $=$ Coulombs/seconds
- Faraday's constant (F) $\mathrm{F}=96,500 \mathrm{C} / \mathrm{mol}$

Electrolysis Stoichiometry

- Gold can be plated out of a solution containing Au^{3+} according to the half reaction:
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$
what mass of gold (in grams) is plated by a 25 minute flow of 5.5 A current?

