

Helping you remember what you learned, oh, so long ago.

Topics – (Until we run out of time)

- The mole
 - Stoichiometry
 - Limiting Reactants
- Solution Chemistry
 - Molarity
 - Dilution
 - Stoichiometry
- Gases
 - Gas Laws
 - Stoichiometry

- Thermochemistry
 - Using Thermochemical Equations
 - Measuring heat change
- Equilibria
 - Equilibrium constants
 - · Le Châtelier's Principle
- Electrochemistry
 - Redox reactions
 - Volteic cells
 - Electrolysis

THE MOLE

The Mole (simply a number)

- Mole number of atoms in 12.00 grams of ¹²C.
- I mole = 6.022×10^{23} of anything.
- Molar mass: mass of one more of a substance.
 - $^{\circ}$ Applies to element as well as compounds.
 - Used to convert between mass and moles.

Gram to Mole Conversion

- How many moles of silver atoms are in 15.0 grams of silver?
 - Molar mass of Ag = 107.87 g/mol
- How many grams of SO_3 are in 4.0 moles SO_3 ?

Mole to Mole conversions

- Using balanced chemical equations to convert between substances.
- For the balanced equation: $H_2 + Cl_2 \rightarrow 2$ HCl, How many moles of HCl will be produced when 2.5 moles Cl_2 reacts with an excess of H_2 .

Combining the conversions

How many grams of HCl would be produced when 4.5 grams of Cl_2 reacts with an excess of H_2 ? (In other words, what is the theoretical yield...)

Limiting Reactant

- If given measured information about both reactants...
- Work the problem twice and determine which produces the least amount of product.
- What is the theoretical yield of NaCl if 2.5 g Na reacts with 3.5 g Cl₂?

Limiting reactant

How many grams of SO_3 will be produced if 3.0 moles of SO_2 reacts with 35.0 grams of O_2 ?

SOLUTION CHEMISTRY

Solution – a homogeneous mixture

Molarity = moles of solute per liters of solution

$$molarity = \frac{moles \, solute}{L \, of \, solution}$$

• What is the molarity of a solution prepared by dissolving 5.0 grams of NaOH in enough water to prepare 250.0 mL of solution?

Molarity as a conversion factor

How many grams of sodium sulfate (Na₂SO₄) is contained in 2.0 L of a 0.105 M solution?

Dilution: $M_1V_1 = M_2V_2$

- Solution of high concentration diluted by adding water to a solution of lower concentration.
- What is the molarity of a solution prepared by dissolving 15.0 mL of 8.0 M HCl with 85.0 mL of water?

Molarity and Stoichiometry

- $M \times V = moles...a$ new road to moles
- What mass of NaCl is required to react with 25.0 mL of 0.105 M AgNO₃. NaCl + AgNO₃ \rightarrow AgCl + NaNO₃

GASES

Gases

- Molecules very far apart (vast amount of empty space).
- No defined volume or shape.
- Pressure = force/area
- Common units: atm and mmHg (torr)
- I atm = 760 mmHg (torr)

Ideal gas equation

- PV=nRT (R=0.08206 L·atm/mol·K)
- What is the volume occupied by 5.0 grams of CO_2 at 25 °C and 3.5 atm.

Gas Laws (Changing conditions)

- Relationships can be derived from PV=nRT
- P,V relationship inverse proportion (Boyle's Law)
- V,T relationship direct proportion (Charles's Law)
- V, n relationship direct proportion (Avogadro's Law.)

Change of conditions

• What is the volume of a gas at 300 °C if the gas occupies 150 mL at 150 °C?

Gases and stoichiometry

- What volume of H_2 at STP is produced at STP if 5.0-g of Na is dropped in water? Na(s) + $H_2O(l) \rightarrow NaOH(aq) + H_2(g)$
- Handy conversion factor at STP: Molar volume of a gas.
- 22.4 L/mol

Heat exchange in chemical reactions

THERMOCHEMISTRY

Thermochemical Equaitons

- Heat transfer of thermal energy
- Thermochemical equation gives balanced reaction and enthalpy (heat at constant P).

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$$
 $\Delta H^{\circ}_{rxn} = -802.3 \text{ kJ}$

• Can be used to convert between kJ $\leftarrow \rightarrow$ mol

Using a thermochemical equation

How much heat is liberated during the combustion of 30.0-g of methane.

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$$
 $\Delta H^{\circ}_{rxn} = -802.3 \text{ kJ}$

Measurements of heat changes

- $\mathbf{q} = \mathsf{mass} \times \mathsf{specific}$ heat \times change in temp.
- \bullet q = m \times s $\times \Delta T$
- What is the specific heat of an unknown metal if 25.0-g of the metal at 100.0 °C is placed in 100.0-g of water at 25.0 °C and the final temperature reached is 28.0 °C? The specific heat of water is 4.184 J/(g·°C.)

EQUILIBRIA

Dealing with reversible reactions

For any reaction:

$$aA(g) + bB(g) \iff cC(g) + dD(g)$$

An equilibrium expression can be created:

$$K_{eq} = \frac{\left[C\right]^{c} \left[D\right]^{d}}{\left[A\right]^{a} \left[B\right]^{b}}$$

- Only include gases or aqueous substance.
- That is, leave out solids and liquids
- Can replace concentrations with pressures (in atm.)

Le Châtelier's Principle

- When a system at equilibrium is disturbed, the system shifts in a direction that minimizes the disturbance.
 - Concentration
 - Pressure (or volume)
 - Temperature

Change in concentration

- Add a substance, makes more (must be gas or aqueous to matter.)
- $CH_3OH(g) \iff CO(g) + 2 H_2(g)$
- Add more CO, rxn. shifts _____
- Remove some H₂, rxn. shifts ______

Change in pressure

- Increase pressure (by decreasing volume), shifts to try to bring down the pressure
 - Shifts towards the side with fewer moles of gas.
- $CH_3OH(g) \iff CO(g) + 2 H_2(g)$
- If the above system is at equilibrium and the pressure is increased,
 System will shift to the

Change in temperature

- Must know if reaction is
 - $^{\circ}$ endothermic (positive ΔH) or
 - \circ exothermic (negative ΔH)
- If exothermic, put heat in as a product.
- If endothermic, put heat in as a reactant.
- Raising the temperature is adding heat.
- Lowering the temperature is removing heat.

Change in temperature

- For the reaction:
 - $CH_3OH(g) \iff CO(g) + 2 H_2(g) \Delta H^\circ=128.1 kJ$
- What conditions of temperature will shift the reaction to produce more products?

The study of the connections between chemical energy and electrical energy.

ELECTROCHEMISTRY

Redox reactions

- Electron transfer reaction.
- Noted by a change in oxidation states.
- $2 \text{ Al(s)} + 3 \text{ Cu(NO}_3)_2(\text{aq}) \rightarrow 2 \text{ Al(NO}_3)_3 + 3 \text{ Cu(s)}$
- LEO says GER
 - · Loss of electrons, oxidation
 - Gain of electrons, reduction

Voltaic cells

- Redox reaction is separated into half reactions so that the transferred electrons must travel across a wire. (Electrical energy)
- Anode oxidation

Cathode –reduction

Cell Potential EMF (E) Voltage (V)

Electrolytic Cells

- Consumes electrical energy to drive an nonspontaneous reaction.
- Amps = Coulombs/seconds
- Faraday's constant (F)F = 96,500 C/mol

Electrolysis Stoichiometry

Gold can be plated out of a solution containing Au³⁺ according to the half reaction:

$$Au^{3+}(aq) + 3 e^{-} \rightarrow Au(s)$$

what mass of gold (in grams) is plated by a 25-minute flow of 5.5 A current?